Skip to main content

Topographic Map Object Classification Using Real-Value Grammar Classifier System

  • Conference paper
Perception and Machine Intelligence (PerMIn 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7143))

Included in the following conference series:

  • 1326 Accesses

Abstract

Learning Classifier Systems (LCS) became a large branch of machine learning applications that received a lot of attention recently. Our model of LCS - rGCS or real-value Grammar Classifier System - uses grammar inference to classify real-value vectors which may describe range variety of problems. In this paper we utilize the rGCS core in an object recognition task. Our application seeks for certain graphic symbols on a topographic map scan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002), http://computer.org/tpami/tp2002/i0509abs.htm

    Article  Google Scholar 

  2. Butz, M.: Kernel-based, ellipsoidal conditions in the real-valued xcs classifier system. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1835–1842. ACM (2005)

    Google Scholar 

  3. Cielecki, L., Unold, O.: Real-valued gcs classifier system. International Journal of Applied Mathematics and Computer Science 17(4), 539–547 (2007)

    Article  Google Scholar 

  4. Cielecki, L., Unold, O.: 3d function approximation with rgcs classifier system. In: Eighth International Conference on Intelligent Systems Design and Applications, ISDA 2008, vol. 3, pp. 136–141. IEEE (2008)

    Google Scholar 

  5. Cielecki, L., Unold, O.: Modified himmelblau function classification with rgcs system. In: Eighth International Conference on Hybrid Intelligent Systems, HIS 2008, pp. 879–884. IEEE (2008)

    Google Scholar 

  6. Cielecki, L., Unold, O.: GCS with Real-Valued Input. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 488–497. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Gold, E.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009), http://doi.acm.org/10.1145/1656274.1656278

    Article  Google Scholar 

  9. Holland, J.: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press (1975)

    Google Scholar 

  10. Holland, J.H.: Adaptation. In: Rosen, R., Snell, F. (eds.) Progress in Theoretical Biology. Academic Press (1976)

    Google Scholar 

  11. Kohonen, T.: Self–organizing formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Unold, O.: Context-free grammar induction with grammar-based classifier system. Archives of Control Science 15(4), 681 (2005)

    MATH  Google Scholar 

  13. Unold, O., Cielecki, L.: Grammar-based classifier system. Issues in Intelligent Systems: Paradigms, 273–286 (2005)

    Google Scholar 

  14. Unold, O.: Playing a Toy-Grammar with GCS. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 300–309. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Wilson, S.: Get real! xcs with continuous-valued inputs. Learning Classifier Systems, 209–219 (2000)

    Google Scholar 

  16. Younger, D.: Recognition and parsing of context-free languages in time n3*. Information and Control 10(2), 189–208 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cielecki, L. (2012). Topographic Map Object Classification Using Real-Value Grammar Classifier System. In: Kundu, M.K., Mitra, S., Mazumdar, D., Pal, S.K. (eds) Perception and Machine Intelligence. PerMIn 2012. Lecture Notes in Computer Science, vol 7143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27387-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27387-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27386-5

  • Online ISBN: 978-3-642-27387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics