Abstract
This paper deals with the Helmholtz-Hodge decomposition of a vector field in bounded domain. We present a practical algorithm to compute this decomposition in the context of divergence-free and curl-free wavelets satisfying suitable boundary conditions. The method requires the inversion of divergence-free and curl-free wavelet Gram matrices. We propose an optimal preconditioning which allows to solve the systems with a small number of iterations. Finally, numerical examples prove the accuracy and the efficiency of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three dimensional nonsmooth domains. Math. Meth. in the Applied Sciences 21, 823–864 (1998)
Amrouche, C., Seloula, N.: L p-theory for vector potentials and Sobolev’s inequalities for vector fields. C. R. Acad. Sci. Paris Ser. I 349, 529–534 (2011)
Battle, G., Federbush, P.: Divergence-free vector wavelets. Michigan Math. Journ. 40, 181–195 (1993)
Beylkin, G.: On the representation of operator in bases of compactly supported wavelets. SIAM J. Numer. Anal. 6, 1716–1740 (1992)
Chiavassa, G., Liandrat, J.: On the Effective Construction of Compactly Supported Wavelets Satisfying Homogeneous Boundary Conditions on the Interval. Appl. Comput. Harmon. Anal. 4, 62–73 (1997)
Chorin, A., Marsden, J.: A Mathematical Introduction to Fluid Mechanics. Springer, Heidelberg (1992)
Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)
Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appli. Maths. 45, 485–560 (1992)
Cohen, A., Daubechies, I., Vial, P.: Wavelets on the Interval and Fast Wavelet Transforms. Appl. Comput. Harmon. Anal. 1, 54–81 (1993)
Cohen, A., Masson, R.: Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity. SIAM J. on Sci. Comput. 21, 1006–1026 (1999)
Deriaz, E., Perrier, V.: Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets. Appl. Comput. Harmon. Anal. 26, 249–269 (2009)
Deriaz, E., Perrier, V.: Divergence-free and curl-free wavelets in 2D and 3D, application to turbulent flows. J. of Turbulence 7, 1–37 (2006)
Dodu, F., Rabut, C.: Irrotational or Divergence-Free Interpolation. Numerisch Mathematic 98, 477–498 (2004)
Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. Springer, Berlin (1986)
Grivet-Talocia, S., Tabacco, A.: Wavelet on the interval with optimal localization. Math. Models. Meth. Appl. Sci. 10, 441–462 (2000)
Jouini, A., Lemarié-Rieusset, P.G.: Analyse multirésolution biorthogonale sur l’intervalle et applications. Annales de l’I.H.P. Section C 10, 453–476 (1993)
Kadri-Harouna, S.: Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressible. Phd thesis of Grenoble University (2010)
Kadri-Harouna, S., Perrier, V.: Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation. Preprint hal-00558474 (2010)
Lemarié-Rieusset, P.G.: Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle. Revista Matemática Iberoamericana 8, 221–236 (1992)
Monasse, P., Perrier, V.: Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions. SIAM J. Math. Anal. 29, 1040–1065 (1998)
Petronetto, F., Paiva, A., Lage, M., Tavares, G., Lopes, H., Lewiner, T.: Meshless Helmholtz-Hodge decomposition. IEEE Trans. on Visu. and Comp. Graps. 16, 338–342 (2010)
Polthier, K., Preub, E.: Identifying Vector Field Singularities using a Discrete Hodge Decomposition. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 113–134. Springer, Heidelberg (2003)
Stevenson, R.: Divergence-free wavelet bases on the hypercube. Appl. Comput. Harmon. Anal. 30, 1–19 (2011)
Stevenson, R.: Divergence-free wavelet bases on the hypercube: Free-slip boundary conditions, and applications for solving the instationary Stokes equations. Math. Comp. 80, 1499–1523 (2011)
Tong, T., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Transactions on Graphics (TOG) 22, 445–452 (2003)
Urban, K.: Wavelet Bases in H(div) and H(curl). Math. Comput. 70, 739–766 (2000)
Urban, K.: Wavelets in Numerical Simulation. Springer, Berlin (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harouna, S.K., Perrier, V. (2012). Helmholtz-Hodge Decomposition on [0,1]d by Divergence-Free and Curl-Free Wavelets. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)