Abstract
This paper studies cubic spline quasi-interpolation of parametric curves through sequences of points in any space dimension. We show that if the parameter values are chosen by chord length, the order of accuracy is four. We also use this chordal cubic spline quasi interpolant to approximate the arc length derivatives and the length of the parametric curve.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The theory of splines and their applications. Academic Press, New York (1967)
Barrera, D., Ibañez, M.J., Sbibih, D., Sablonnière, P.: Near best univariate discrete quasi-interpolants on non-uniform partitions. Constr. Approx. 28, 237–251 (2008)
Chen, G., Chui, C.K., Lai, M.J.: Construction of real-time spline quasi-interpolation schemes. Approx. Theory Appl. 4, 61–75 (1988)
DeVore, R.A., Lorentz, G.G.: Constructive approximation. Springer, Berlin (1993)
Floater, M.S.: Arc length estimation and the convergence of parametric polynomial interpolation. BIT 45, 679–694 (2005)
Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26(1), 25–33 (2006)
Lee, B.G., Lyche, T., Schumaker, L.L.: Some examples of quasi-interpolants constructed from local spline projectors. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, Oslo 2000, pp. 243–252 (2000)
Lyche, T., Mørken, K.: A metric for parametric approximation. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 311–318. A. K. Peters, Wellesley (1994)
Rabut, C.: Higher level m-harmonic cardinal B-splines. Numer. Algorithms 2, 63–84 (1992)
Sablonnière, P.: Univariate spline quasi-interpolants and applications to numerical analysis. Rend. Sem. Mat. Univ. Pol. Torino 63(2), 107–118 (2005)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sablonnière, P., Sbibih, D., Tahrichi, M. (2012). Chordal Cubic Spline Quasi Interpolation. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)