Abstract
In this paper, we present a method based on a quadratic spline quasi-interpolant for the estimation of integral properties of a planar closed curve. The latter include the length, area, center of gravity and moment of inertia of the given curve. Then, we analyze the error estimates on the approximations of these properties and we validate the theoretical results by numerical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brauer, A.: Limits for the characteristic roots of a matrix II. Duke Math. J. 14, 21–26 (1947)
Davis, P.J., Vitale, R.A., Ben-Sabar, E.: On the deterministic and stochastic approximation of regions. J. Approx. Theory 21(1), 60–88 (1977)
Bailey, D.H., Crandall, R.E.: Experimental Mathematics 11(4), 527–546 (2002)
Dubuc, S., Merrien, J.-L., Sablonnière, P.: The length of the de Rham curve. J. Math. Anal. Appl. 223, 182–195 (1998)
Floater, M.: Arc length estimation and the convergence of parametric polynomial interpolation. Preprint CMA, Oslo (2005)
Floater, M.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26, 25–33 (2006)
Floater, M., Rasmussen, A.F.: Point-based methods for estimating the length of a parametric curve. J. Comput. Applied Math. 196, 512–522 (2006)
Kreyszig, E.: Differential Geometry. Dover, New York (1991)
Rasmussen, A.F., Floater, M.S.: A point-based method for estimating surface area. In: Field, D., Gonsor, D., Neamtu, M. (eds.) Electronic Proceedings of the SIAM Conference on Geometric Design, Phoenix (2005)
Sablonnière, P.: Comparison of some approximation methods for computing arc lengths. Congrés NTA (Nouvelles Tendances en Approximation). University of Oujda (October 2009)
Sablonnière, P.: Univariate spline quasi-interpolants and applications to numerical analysis. Rend. Sem. Mat. Univ. Pol. Torino 63(2), 107–118 (2005)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allouch, C., Sablonnière, P., Sbibih, D. (2012). Estimation of Integral Properties of a Planar Closed Curve Based on a Quadratic Spline Quasi-Interpolant. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)