Skip to main content

Tracking Level Set Representation Driven by a Stochastic Dynamics

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

We introduce a non-linear stochastic filtering technique to track the state of a free curve from image data. The approach we propose is implemented through a particle filter, which includes color measurements characterizing the target and the background respectively. We design a continuous-time dynamics that allows us to infer inter-frame deformations. The curve is defined by an implicit level-set representation and the stochastic dynamics is expressed on the level-set function. It takes the form of a stochastic partial differential equation with a Brownian motion of low dimension. Specific noise models lead to the traditional level set evolution law based on mean curvature motions, while other forms lead to new evolution laws with different smoothing behaviors. In these evolution models, we propose to combine local photometric information, some velocity induced by the curve displacement and an uncertainty modeling of the dynamics. The associated filter capabilities are demonstrated on various sequences with highly deformable objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnaud, E., Mémin, E.: Partial linear gaussian model for tracking in image sequences using sequential monte carlo methods. IJCV 74(1), 75–102 (2007)

    Article  Google Scholar 

  2. Chan, T., Vese, L.: An active contour model without edges. In: Scale-Space Theories in Computer Vision, pp. 141–151 (1999)

    Google Scholar 

  3. Cremers, D., Soatto, S.: Motion competition: A variational framework for piecewise parametric motion segmentation. IJCV 62(3), 249–265 (2005)

    Article  Google Scholar 

  4. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing 50(3), 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  5. Dambreville, S., Rathi, Y., Tannenbaum, A.: Tracking deformable objects with unscented kalman filtering and geometric active contours. In: American Control Conference, pp. 1–6 (2006)

    Google Scholar 

  6. Feil, B., Kucherenko, S., Shah, N.: Comparison of monte carlo and quasi monte carlo sampling methods in high dimensional model representation. In: Proceedings of the 2009 First International Conference on Advances in System Simulation, pp. 12–17. IEEE Computer Society, Washington, DC, USA (2009)

    Chapter  Google Scholar 

  7. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. on Image Processing 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Comput. Vis. Image Underst. (1995)

    Google Scholar 

  9. Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: CVPR (1), pp. 660–667 (2004)

    Google Scholar 

  10. Nummiaro, K., Koller-Meier, E., Gool, L.V.: An adaptive color-based particle filter. Image and Vision Computing 21(1), 99–110 (2003)

    Article  MATH  Google Scholar 

  11. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. of Visual Communication and Image Representation 13, 249–268 (2002)

    Article  Google Scholar 

  13. Pons, J.P., Hermosillo, G., Keriven, R., Faugeras, O.: Maintaining the point correspondence in the level set framework. Journal of Computational Physics 220(1), 339–354 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Analysis and Machine Intelligence 29(8), 1470–1475 (2007)

    Article  Google Scholar 

  15. Sethian, J.A.: Theory, algorithms, and applications of level set methods for propagating interfaces. Acta Numerica 5(-1), 309–395 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avenel, C., Mémin, E., Pérez, P. (2012). Tracking Level Set Representation Driven by a Stochastic Dynamics. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics