Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 404))

Abstract

Urea kinetic modelling (UKM) has been generally accepted as a method for quantifying hemodialysis (HD) treatment. During hemodialysis, reduction in the urea concentration in the intracellular fluid (ICF) compartment will lag behind that in the extra cellular fluid (ECF) compartment, and following the end of dialysis, a ”rebound” in the blood level of urea will occur where it continues to rise due to diffusion of urea from the ICF to ECF to establish an equilibrium state. Because of compartment effects, the dose of dialysis with regard to urea removal is significantly overestimated from immediate post-dialysis urea concentrations, because 30 to 60 min are required for concentration gradients to dissipate and for urea concentrations to equilibrate across body water spaces during the post-dialysis period. To avoid the delay of waiting for an equilibrated post-dialysis sample, it became necessary to describe and to quantitate effects causing the urea compartmentalization during dialysis; two-pool modeling approaches have been developed that more accurately reflect the amount of urea removed. This in turn gives more adequate measures not only of dialysis adequacy, but also of the protein catabolic rate, an important nutritional measure that is clinically monitored in dialysis patients. This chapter discusses the double pool urea kinetic models and regional blood flow models in order to understand the concept of urea rebound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, F., Gibson, S., Barlee, V., Bosch, J.P.: Urea kinetic modeling at high urea clearances: Implications for clinical practice. Adv. Ren. Replace Ther. 1(1), 5–14 (1994)

    Google Scholar 

  • Alloatti, S., Molino, A., Manes, M., Bosticardo, G.M.: Urea rebound and effectively delivered dialysis dose. Nephrol. Dial. Transplant. 13(6), 25–30 (1998)

    Article  Google Scholar 

  • Azar, A.T.: Adaptive Neuro Fuzzy system as a novel approach for predicting post-dialysis urea rebound. International Journal of Intelligent Systems Technologies and Applications (IJISTA) 10(3), 302–330 (2011)

    Article  Google Scholar 

  • Azar, A.T., Wahba, K.M.: Artificial Neural Network for Prediction of Equilibrated Dialysis Dose without Intradialytic Sample. Saudi J. Kidney Dis. Transpl. 22(4), 705–711 (2011)

    Google Scholar 

  • Azar, A.T., Balas, V.E., Olariu, T.: Artificial Neural Network for Accurate Prediction of Post-Dialysis Urea Rebound (2010), doi:10.1109/SOFA.2010.5565606

    Google Scholar 

  • Beige, J., Sharma, A.M., Distler, A., et al.: Monitoring dialysis efficacy by comparing delivered and predicted Kt/V. Nephrol. Dial. Transplant. 14(3), 683–687 (1999)

    Article  Google Scholar 

  • Bhaskaran, S., Tobe, S., Saiphoo, C., et al.: Blood urea levels 30 minutes before the end of dialysis are equivalent to equilibrated blood urea. ASAIO J. 43(5), M759–M762 (1997)

    Article  Google Scholar 

  • Brahm, J.: Urea permeability of human red cells. J. Gen. Physiol. 82(1), 1–23 (1983)

    Article  Google Scholar 

  • Burgelman, M., Vanholder, R., Fostier, H., Ringoir, S.: Estimation of parameters in a two-pool urea kinetic model for hemodialysis. Med. Engl. Phys. 19(1), 69–76 (1997)

    Article  Google Scholar 

  • Canaud, B., Bosc, J.Y., Cabrol, L., et al.: Urea as a marker of adequacy in hemodialysis: lesson from in vivo urea dynamics monitoring. Kidney Int. suppl. 76, S28–S40 (2000)

    Article  Google Scholar 

  • Canaud, B., Bosc, J.Y., Leblanc, M., et al.: A simple and accurate method to determine equilibrated post-dialysis urea concentration. Kidney Int. 51(6), 2000–2005 (1997)

    Article  Google Scholar 

  • Cappello, A., Avanzolini, G., Chiari, L.: Estimation of parameters in a two-pool urea kinetic model for hemodialysis. Med. Eng. Phys. 20(4), 315–318 (1998)

    Article  Google Scholar 

  • Castro, M.C.M., Romao Jr., J.E., Marcondes, M.: Measurement of blood urea concentration during hemodialysis is not an accurate method to determine equilibrated post-dialysis urea concentration. Nephrol. Dial. Transplant. 16(9), 1814–1817 (2001)

    Article  Google Scholar 

  • Chirananthavat, T., Tungsanga, K., Eiam-Ong, S.: Accuracy of using 30-minute post-dialysis BUN to determine equilibrated Kt/V. J. Med. Assoc. Thai. 89(suppl. 2), 54–64 (2006)

    Google Scholar 

  • Daugirdas, J.T., Blake, P.G., Ing, T.S. (eds.): Handbook of Dialysis, 4th edn. Lippincott, Williams and Wilkins, Philadelphia (2007)

    Google Scholar 

  • Daugirdas, J.T., Greene, T., Depner, T.A., et al.: Factors that Affect Post-dialysis Rebound in Serum Urea Concentration, Including the Rate of Dialysis: Results from the HEMO Study. J. Am. Soc. Nephrol. 15(1), 194–203 (2004)

    Article  Google Scholar 

  • Daugirdas, J.T., Greene, T., Depner, T.A., et al.: Relationship between apparent (single-pool) and true (double-pool) urea distribution volume. Kidney Int. 56(5), 1928–1933 (1999)

    Article  Google Scholar 

  • Daugirdas, J.T., Depner, T.A., Gotch, F.A., et al.: Comparison of methods to predict equilibrated Kt/V in the HEMO Pilot Study. Kidney Int. 52(5), 1395–1405 (1997)

    Article  Google Scholar 

  • Daugirdas, J.T., Schneditz, D., Leehey, D.J.: Effect of access recirculation on the modeled urea distribution volume. Am. J. Kidney Dis. 27(4), 512–518 (1996a)

    Article  Google Scholar 

  • Daugirdas, J.T., Burke, M.S., Balter, P., et al.: Screening for extreme postdialysis urea rebound using the Smye method: patients with access recirculation identified when a slow flow method is not used to draw the postdialysis blood. Am. J. Kidney Dis. 28(5), 727–731 (1996b)

    Article  Google Scholar 

  • Daugirdas, J.T., Schneditz, D.: Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. ASAIO J. 41(3), M719–M724 (1995)

    Article  Google Scholar 

  • Daugirdas, J.T.: Estimation of equilibrated Kt/V using the unequilibrated post dialysis BUN. Semin. Dial. 8(5), 283–284 (1995)

    Article  Google Scholar 

  • Daugirdas, J.T.: Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J. Am. Soc. Nephrol. 4(5), 1205–1213 (1993)

    Google Scholar 

  • Dedrick, R.L., Bischoff, K.B.: Pharmacokinetics in applications of the artificial kidney. In: Chem. Eng. Prog. Symp. Ser., vol. 64, pp. 32–44 (1968)

    Google Scholar 

  • Dedrick, R.L., Gabelnick, H.L., Bischoff, K.B.: Kinetics of urea distribution. In: Proc. Ann. Conf. Eng. Med. Biol., vol. 10, 36.1 (1968)

    Google Scholar 

  • Depner, T.A., Rizwan, S., Cheer, A.Y., et al.: High venous urea concentrations in the opposite arm: A consequence of hemodialysis-induced compartment disequilibrium. ASAIO J. 37(3), 141–143 (1991)

    Google Scholar 

  • Depner, T.A.: Multicompartment models. In: Depner, T.A. (ed.) Pre-scribing Hemodialysis: A Guide to Urea Modeling, pp. 91–126. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  • Duchesne, R., Klein, J.D., Velotta, J.B., et al.: UT-A urea transporter protein in heart: Increased abundance during uremia, hypertension, and heart failure. Circ. Res. 89(2), 139–145 (2001)

    Article  Google Scholar 

  • Evans, J.H., Smye, S.W., Brocklebank, J.T.: Mathematical modelling of haemodialysis in children. Pediatr. Nephrol. 6(4), 349–353 (1992)

    Article  Google Scholar 

  • Fernandez, E.A., Valtuille, R., Willshaw, P., Perazzo, C.A.: Using Artificial Intelligence to Predict the Equilibrated Post-dialysis Blood Urea Concentration. Blood Purif. 19(3), 271–285 (2001)

    Article  Google Scholar 

  • Flanigan, M.J., Fangman, J., Lim, V.S.: Quantitating hemodialysis: A comparison of three kinetic models. Am. J. Kidney Dis. 17(3), 295–302 (1991)

    Google Scholar 

  • Garred, L.J., Canaud, B., Bosc, J.Y., Tetta, C.: Urea rebound and delivered Kt/V determination with a continuous urea sensor. Nephrol. Dial. Transplant. 12(3), 535–542 (1997)

    Article  Google Scholar 

  • George, T.O., Priester-Coary, A., Dunea, G., et al.: Cardiac output and urea kinetics in dialysis patients: Evidence supporting the regional blood flow model. Kidney Int. 50(4), 1273–1277 (1996)

    Article  Google Scholar 

  • Goldstein, S.L., Brewer, E.D.: Logarithmic extrapolation of a 15- minute postdialysis BUN to predict equilibrated BUN and calculate double-pool Kt/V in the pediatric hemodialysis population. Am. J. Kidney Dis. 36(1), 98–104 (2000)

    Article  Google Scholar 

  • Gotch, F.A., Keen, M.L.: Kinetic modeling in hemodialysis. In: Nissenson, A.R., Fine, R.N. (eds.) Clinical Dialysis, 4th edn., pp. 153–202. McGrraw-Hill, New York (2005)

    Google Scholar 

  • Grandi, F., Avanzolini, G., Cappello, A.: Analytic solution of the variable-volume double-pool urea kinetics model applied to parameter estimation in hemodialysis. Comput. Biol. Med. 25(6), 505–518 (1995)

    Article  Google Scholar 

  • Guh, J., Yang, C., Yang, J., Chen, L., Lai, Y.: Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am. J. Kidney Dis. 31(4), 638–646 (1998)

    Article  Google Scholar 

  • Goldau, R.: Clinical Evaluation of Novel Methods to Determine Dialysis Parameters Using Conductivity Cells. Ph. D. Würzburg University (2002)

    Google Scholar 

  • Heineken, F.G., Evans, M.C., Keen, M.L., Gotch, F.A.: Intercompartmental fluid shifts in hemodialysis patients. Biotechnol. Progr. 3(2), 69–73 (1987)

    Article  Google Scholar 

  • Jean, G., Chazot, C., Charra, B., et al.: Is post-dialysis urea rebound significant with long slow hemodialysis? Blood Purif. 16(4), 187–196 (1998)

    Article  Google Scholar 

  • Jean, G., Charra, B., Chazot, C., Laurent, G.: Quest for post-dialysis urea rebound-equilibrated Kt/V with only intradialytic urea samples. Kidney Int. 56(3), 1149–1153 (1999)

    Article  Google Scholar 

  • Kaufman, A.M., Schneditz, D., Smye, S., et al.: Solute disequilibrium and multicompartment modeling. Adv. Ren. Replace Ther. 2(4), 319–329 (1995)

    Google Scholar 

  • Kooman, J.P., van der Sande, F.M., Leunissen, K.M.: Kt/V: Finding the Tree within the Woods. Nephrol. Dial. Transplant. 16(9), 1749–1752 (2001)

    Article  Google Scholar 

  • Leblanc, M., Charbonneau, R., Lalumiere, G., et al.: Postdialysis Urea Rebound: Determinants and Influence on Dialysis Delivery in Chronic Hemodialysis Patients. Am. J. Kidney Dis. 27(2), 253–261 (1996)

    Article  Google Scholar 

  • Leypoldt, J.K., Jaber, B.L., Zimmerman, D.L.: Predicting treatment dose for novel therapies using urea standard Kt/V. Semin. Dial. 17(2), 142–145 (2004)

    Article  Google Scholar 

  • Maduell, F., Garcia-Valdecasas, J., Garcia, H., et al.: Urea reduction ratio considering urea rebound. Nephron 78(2), 143–147 (1998)

    Article  Google Scholar 

  • Maduell, F., Garcia-Valdecasas, J., Garcia, H., et al.: Validation of different methods to calculate KtV considering postdialysis rebound. Nephrol. Dial. Transplant. 12(9), 1928–1933 (1997)

    Article  Google Scholar 

  • Malovrh, M.: Non-invasive evaluation of vessels by duplex sonography prior to construction of arteriovenous fistula for haemodialysis. Nephrol. Dial. Transplant. 13(1), 125–129 (1998)

    Article  Google Scholar 

  • Matthews, D.E., Downey, R.S.: Measurement of urea kinetics in humans: a validation of stable isotope tracer methods. Am. J. Physiol. 246(6 Pt 1), E519–E527 (1984)

    Google Scholar 

  • Metry, G.S., Attman, P.O., Lönnroth, P., et al.: Urea kinetics during hemodialysis measured by microdialysis–a novel technique. Kidney Int. 44(3), 622–629 (1993)

    Article  Google Scholar 

  • NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Updates: Hemodialysis Adequacy, Peritoneal Dialysis Adequacy, Vascular Access. Am. J. Kidney Dis. 48(suppl. 1), S28–S58 (2006)

    Google Scholar 

  • NKF-K/DOQI: Clinical practice guidelines for hemodialysis adequacy: Update. Am. J. Kidney. Dis. 37(1 suppl. 1), S7–S64 (2001)

    Google Scholar 

  • Pedrini, L.A., Zereik, S., Rasmy, S.: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int. 34(6), 817–824 (1988)

    Article  Google Scholar 

  • Pflederer, B.R., Torrey, C., Priester-Coary, A., Lau, A.H., Daugirdas, J.T.: Estimating equilibrated Kt/V from an intradialytic sample: effects of access and cardiopulmonary recirculations. Kidney Int. 48(3), 832–837 (1995)

    Article  Google Scholar 

  • Renkin, E.M.: Effects of blood flow on diffusion kinetics in isolated, perfused hindlegs of cats; a double circulation hypothesis. Am. J. Physiol. 183(1), 125–136 (1955)

    Google Scholar 

  • Ronco, C., Brendolan, A., Crepaldi, C., et al.: Ultrafiltrations-rates and dialyse hypotension. Dialyse J. 40, 8–15 (1992)

    Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis. In: Maher, J.F. (ed.) Replacement of Renal Function by Dialysis, 3rd edn., pp. 87–143. Kluwer Academic, Dordrecht (1989)

    Chapter  Google Scholar 

  • Schneditz, D., Platzer, D., Daugirdas, J.T.: A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis. Nephrol. Dial. Transplant. 24(7), 2218–2224 (2009)

    Article  Google Scholar 

  • Schneditz, D., Daugirdas, J.T.: Compartment effects in hemodialysis. Semin. Dial. 14(4), 271–277 (2001)

    Article  Google Scholar 

  • Schneditz, D., Fariyike, B., Osheroff, R., Levin, N.W.: Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool urea kinetic models. J. Am. Soc. Nephrol. 6(5), 1360–1370 (1995)

    Google Scholar 

  • Schneditz, D., Daugirdas, J.T.: Formal analytical solution to a regional blood flow and diffusion based urea kinetic model. ASAIO J. 40(3), M667–M673 (1994)

    Article  Google Scholar 

  • Schneditz, D., VanStone, J., Daugirdas, J.T.: A regional blood circulation alternative to in-series two compartment urea kinetic modeling. ASAIO J. 39(3), M573–M577 (1993)

    Article  Google Scholar 

  • Schneditz, D., Roob, J., Oswald, M., et al.: Nature and rate of vascular refilling during hemodialysis and ultrafiltration. Kidney Int. 42(6), 1425–1433 (1992a)

    Article  Google Scholar 

  • Schneditz, D., Kaufman, A.M., Polaschegg, H.D., et al.: Cardiopulmonary recirculation during hemodialysis. Kidney Int. 42(6), 1450–1456 (1992b)

    Article  Google Scholar 

  • Sharma, A., Espinosa, P., Bell, L., et al.: Multicompartment Urea Kinetics In Well-Dialyzed Children. Kidney Int. 58(5), 2138–2146 (2000)

    Article  Google Scholar 

  • Sharma, A.K.: Reassessing hemodialysis adequacy in children: The case for more. Pediatr. Nephrol. 16(4), 383–390 (2001)

    Article  Google Scholar 

  • Sherman, R.A., Kapoian, T.: Recirculation, urea disequilibrium, and dialysis efficiency: Peripheral arteriovenous versus central venovenous vascular access. Am. J. Kidney Dis. 29(4), 479–489 (1997)

    Article  Google Scholar 

  • Smith, C.P.: Mammalian urea transporters. Exp. Physiol. 94(2), 180–185 (2009)

    Article  Google Scholar 

  • Smye, S.W., Tattersall, J.E., Will, E.J.: Modeling the postdialysis re-bound: the reconciliation of current formulas. ASAIO J. 45(6), 562–567 (1999)

    Article  Google Scholar 

  • Smye, S.W., Lindley, E.J., Will, E.J.: Simulating the effect of exercise on urea clearance in hemodialysis. J. Am. Soc. Nephrol. 9(1), 128–132 (1998)

    Google Scholar 

  • Smye, S.W., Will, E.J.: A mathematical analysis of a two-compartment model of urea kinetics. Phys. Med. Biol. 40(12), 2005–2014 (1995)

    Article  Google Scholar 

  • Smye, S.W., Dunderdale, E., Brownridge, G., Will, E.: Estimation of treatment dose in high-efficiency haemodialysis. Nephron 67(1), 24–29 (1994)

    Article  Google Scholar 

  • Smye, S.W., Evans, J.H., Will, E., Brocklebank, J.T.: Paediatric haemodialysis: Estimation of treatment efficiency in the presence of urea rebound. Clin. Phys. Physiol. Meas. 13(1), 51–62 (1992)

    Article  Google Scholar 

  • Spiegel, D.M., Baker, P.L., Babcock, S., et al.: Hemodialysis urea rebound: the effect of increasing dialysis efficiency. Am. J. Kidney Dis. 25(1), 26–29 (1995)

    Article  Google Scholar 

  • Star, R., Hootkins, J., Thompson, J., et al.: Variability and stability of two pool urea mass transfer coefficient. J. Am. Soc. Nephrol. 3, 395A (1992)

    Google Scholar 

  • Tattersall, J., Farrington, K., Bowser, M., et al.: Underdialysis caused by reliance on single pool urea kinetic modeling. J. Am. Soc. Nephrol. 3, 398 (1996a)

    Google Scholar 

  • Tattersall, J.E., DeTakats, D., Chamney, P., et al.: The post-haemodialysis rebound: predicting and quantifying its effect on KtV. Kidney Int. 50(6), 2094–2102 (1996b)

    Article  Google Scholar 

  • Tattersall, J.E., Chamney, P., Aldridge, C., Greenwood, R.N.: Recirculation and the post-dialysis rebound. Nephrol. Dial. Transplant. 11(suppl. 2), 75–80 (1996c)

    Article  Google Scholar 

  • Teichholz, L.E., Kreulen, T., Herman, M.V., et al.: Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am. J. Cardiol. 37(1), 7–11 (1976)

    Article  Google Scholar 

  • Timmer, R.T., Klein, J.D., Bagnasco, S.M., et al.: Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am. J. Physiol. Cell Physiol. 281(4), C1318–C1325 (2001)

    Google Scholar 

  • Yamada, T., Hiraga, S., Akiba, T., et al.: Analysis of Urea Nitrogen and Creatinine Kinetics in Hemodialysis: Comparison of a Variable-Volume Two-Compartment Model with a Regional Blood Flow Model and Investigation of a Appropriate Solute Kinetics Model for Clinical Application. Blood Purif. 18(1), 18–29 (2000)

    Article  Google Scholar 

  • Yashiro, M., Watanabe, H., Muso, E.: Simulation of post-dialysis urea rebound using regional flow model. Clin. Exp. Nephrol. 8(2), 139–145 (2004)

    Article  Google Scholar 

  • Vanholder, R., Burgelman, M., De Smet, R., et al.: Two-Pool versus Single-Pool Models in the Determination of Urea Kinetic Parameters. Blood Purif. 14(6), 437–450 (1996)

    Article  Google Scholar 

  • Wagner, L., Klein, J.D., Sands, J.M., Baylis, C.: Urea transporters are distributed in endothelial cells and mediate inhibition of L-arginine transport. Am. J. Physiol. Renal. Physiol. 283(3), F578–F582 (2002)

    Google Scholar 

  • Zhao, D., Sonawane, N.D., Levin, M.H., Yang, B.: Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim. Biophys. Acta 1768(7), 1815–1821 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azar, A.T., Yashiro, M., Schneditz, D., Roa, L.M. (2013). Double Pool Urea Kinetic Modeling. In: Azar, A. (eds) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27458-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27458-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27457-2

  • Online ISBN: 978-3-642-27458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics