Skip to main content

A Numerical Method for Two-Dimensional Schrödinger Equation Using MPS

  • Conference paper
Information Computing and Applications (ICICA 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 243))

Included in the following conference series:

Abstract

In this paper, we propose a numerical scheme to solve the two-dimensional (2D) time-dependent Schrödinger equation by using the method of particular solution(MPS) and radial basis function(RBF). The scheme works in a similar fashion as finite-difference methods. The results of numerical experiments are presented, and compared with analytical solutions to confirm the good accuracy of the presented scheme.

This work was supported by the National Natural Science Foundation of China (Nos. 10671086, 11071031, U0935004), and the Natural Science Foundation of Shandong Province, China (NO. ZR2010AM014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, A.: Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6, 313–319 (1998)

    Article  Google Scholar 

  2. Levy, M.: Parabolic Equation Methods for Electromagnetic Wave Propagation. IEEE (2000)

    Google Scholar 

  3. Tappert, F.D.: The parabolic approximation method. In: Keller, J.B., Papadakis, J.S. (eds.) Wave Propagation and Underwater Acoustics. Lecture Notes in Physics, vol. 70, pp. 224–287. Springer, Berlin (1977)

    Chapter  Google Scholar 

  4. Huang, W., Xu, C., Chu, S.T., Chaudhuri, S.K.: The finite-difference vector beam propagation method. J. Lightwave Technol. 10(3), 295–304 (1992)

    Article  Google Scholar 

  5. Hajj, F.Y.: Solution of the Schrodinger equation in two and three dimensions. J. Phys. B At. Mol. Phys. 18, 1–11 (1985)

    Article  Google Scholar 

  6. Ixaru, L.G.: Operations on oscillatory functions. Comput. Phys. Comm. 105, 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M.: A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Com. and Math. 54, 136–146 (2007)

    MATH  Google Scholar 

  8. Kalita, J.C., Chhabra, P., Kumar, S.: A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrödinger equation. J. Comput. Appl. Math. 197, 141–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71, 16–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Subasi, M.: On the finite-difference schemes for the numerical solution of two dimensional Schrödinger equation. Numer. Methods Partial Differential Equations 18, 752–758 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, G., Jiang, T.: A numerical method for two-dimensional time-dependent Schrödinger equation. The Acdemic Journal of LinYi University 6, 1–4 (2011)

    Google Scholar 

  12. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11–12 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, C.S., Fan, C.M., Wen, P.H.: The method of particular solutions for solving elliptic problems with variable coefficients. Communication in Numerical Methods in Engineering (2010)

    Google Scholar 

  14. Quan, S.: A meshless method of lines for the numerical solution of KdV equation using radial basis functions. Engineering Analysis with Boundary Elements 33, 1171–1180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Shokri, A.: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer. Algor. 52, 461–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dereli, Y., Irk, D., Daǧ, İ.: Soliton solutions for NLS equation using radial basis functions. Chaos, Solitons and Fractals 42, 1227–1233 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, T., Wang, GD., Jiang, ZW. (2011). A Numerical Method for Two-Dimensional Schrödinger Equation Using MPS. In: Liu, C., Chang, J., Yang, A. (eds) Information Computing and Applications. ICICA 2011. Communications in Computer and Information Science, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27503-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27503-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27502-9

  • Online ISBN: 978-3-642-27503-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics