Abstract
This chapter presents the anatomy and physiology of the peritoneal barrier as background for understanding the complex process of the transperitoneal transport system. Kinetic models are presented in three general forms: membrane models, compartmental models, and distributed models. Applications of each of these are offered to illustrate the use of each model scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamson, R.H., Lenz, J.F., Zhang, X., et al.: Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557(Pt 3), 889–907 (2004)
Agre, P., Preston, G.M., Smith, B.L., et al.: Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265(4 Pt 2), F463–F476 (1993)
Alberts, D.S., Liu, P.Y., Hannigan, E.V., et al.: Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl. J. Med. 335(26), 1950–1955 (1996)
Allen, L.: On the penetrability of the lymphatics of the diaphragm. Anat. Rec. 124(4), 639–657 (1956)
Allen, L., Weatherford, T.: Role of the fenestrated basement membrane in lymphatic absorption from the peritoneal cavity. Am. J. Physiol. 197, 551–554 (1959)
Aroeira, L.S., Aguilera, A., Sanchez-Tomero, J.A., et al.: Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18(7), 2004–2013 (2007)
Babb, A.L., Johansen, P.J., Strand, M.J., et al.: Bidirectional permeability of the human peritoneum to middle molecules. In: Proc. Eur. Dial. Transplant. Assoc., vol. 10, pp. 247–262 (1973)
Barakat, R.R., Sabbatini, P., Bhaskaran, D., et al.: Intraperitoneal chemotherapy for ovarian carcinoma: results of long-term follow-up. J. Clin. Oncol. 20(3), 694–698 (2002)
Baron, M.A.: Structure of the intestinal peritoneum in man. American Journal of Anatomy 69, 439–497 (1941)
Bettendorf, U.: Electronmicroscopic studies on the peritoneal resorption of intraperitioneally injected latex particles via the diaphragmatic lymphatics. Lymphology 12(2), 66–70 (1979)
Bettendorf, U.: Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology 11(3), 111–116 (1978)
Bomar, J.B., Decherd, J.F., Hlavinka, D.J., et al.: The elucidation of maximum efficiency-minimum cost peritoneal dialysis protocols. Trans. Am. Soc. Artif. Intern. Organs 20A, 120–129 (1974)
Boucher, Y., Baxter, L.T., Jain, R.K.: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50(15), 4478–4484 (1990)
Bunke, C.M., Aronoff, G.R., Brier, M.E., et al.: Vancomycin kinetics during continuous ambulatory peritoneal dialysis. Clin. Pharmacol. Ther. 34(5), 631–637 (1983)
Carnahan, B., Luther, H.A., Wilkes, J.O.: Applied Numerical Methods, pp. 464–481. John Wiley & Sons, New York (1969)
Chagnac, A., Herskovitz, P., Ori, Y., et al.: Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J. Am. Soc. Nephrol. 13(10), 2554–2559 (2002)
Chagnac, A., Herskovitz, P., Weinstein, T., et al.: The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. J. Am. Soc. Nephrol. 10(2), 342–346 (1999)
Chang, R.L.S.: A model of capillary solutes and fluid exchange. Chem. Eng. Commun. 4(1), 189–206 (1980)
Chang, R.S., Robertson, C.R., Deen, W.M., Brenner, B.M.: Permeability of the glomerular capillary wall to macromolecules I. Theoretical considerations. Biophys. J. 15(9), 861–886 (1975)
Collins, J.M.: Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir. Physiol. 46(3), 391–404 (1981)
Courtice, F.C., Steinbeck, A.W.: The lymphatic drainage of plasma from the peritioneal cavity of the cat. Aust. J. Exp. Biol. Med. Sci. 28(2), 161–169 (1950)
Cunha, B.A., Ristuccia, A.M.: Clinical usefulness of vancomycin. Clin. Pharm. 2(5), 417–424 (1983)
Cutler, N.R., Narang, P.K., Lesko, L.J., et al.: Vancomycin disposition: the importance of age. Clin. Pharmacol. Ther. 36(6), 803–810 (1984)
Daugirdas, J.T., Ing, T.S., Gandhi, V.C., et al.: Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J. Lab. Clin. Med. 95(3), 351–361 (1980)
Dedrick, R.L.: Interspecies scaling of regional drug delivery. J. Pharm. Sci. 75(11), 1047–1052 (1986)
Dedrick, R.L., Flessner, M.F.: Pharmacokinetic considerations on monoclonal antibodies. Prog. Clin. Biol. Res. 288, 429–438 (1989)
Dedrick, R.L., Myers, C.E., Bungay, P.M., DeVita, V.T.: Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 62(1), 1–11 (1978)
Demissachew, H., Lofthouse, J., Flessner, M.F.: Tissue sources and blood flow limitations of osmotic water transport across the peritoneum. J. Am. Soc. Nephrol. 10(2), 347–353 (1999)
DiZerga, G.: Peritoneal Surgury. Springer, New York (2000)
Dobbie, J.W., Anderson, J.D., Hind, C.: Long-term effects of peritoneal dialysis on peritoneal morphology. Perit. Dial. Int. 14(suppl. 3), S16–S20 (1994)
Dulaney, J.T., Hatch, F.E.: Peritoneal dialysis and loss of proteins: a review. Kidney Int. 26(3), 253–262 (1984)
Dykes, P.W., Jones, J.H.: Albumin exchange between plasma and ascites fluid. Clin. Sci. 34(1), 185–197 (1968)
Elk, J.R., Adair, T., Drake, R.E., Gabel, J.C.: The effect of anesthesia and surgery on diaphragmatic lymph vessel flow after endotoxin in sheep. Lymphology 23(3), 145–148 (1990)
Flessner, M.F., Credit, K., Richardson, K., et al.: Peritoneal Inflammation after 20-Week Exposure to Dialysis Solution: Effect of Solution versus Catheter-Foreign Body Reaction. Perit. Dial. Int. 30(3), 284–293 (2010)
Flessner, M.F.: The transport barrier in intraperitoneal therapy. Am. J. Physiol. Renal. Physiol. 288(3), F433–F442 (2005)
Flessner, M.F., Choi, J., Credit, K., et al.: Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin. Cancer Res. 11(8), 3117–3125 (2005)
Flessner, M.F., Choi, J., He, Z., Credit, K.: Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy. J. Appl. Physiol. 97(4), 1518–1526 (2004)
Flessner, M.F., Henegar, J., Bigler, S., Genous, L.: Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit. Dial. Int. 23(6), 542–549 (2003)
Flessner, M.F.: The role of extracellular matrix in transperitoneal transport of water and solutes. Perit. Dial. Int. 21(suppl. 3), S24–S29 (2001a)
Flessner, M.F.: Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach. Am. J. Physiol. Gastrointest Liver Physiol. 281(2), G424–G437 (2001b)
Flessner, M.F., Lofthouse, J., Williams, A.: Increasing peritoneal contact area during dialysis improves mass transfer. J. Am. Soc. Nephrol. 12(10), 2139–2145 (2001a)
Flessner, M.F., Lofthouse, J., Zakaria, E.R.: Improving contact area between the peritoneum and intraperitoneal therapeutic solutions. J. Am. Soc. Nephrol. 12(4), 807–813 (2001b)
Flessner, M.F., Dedrick, R., Gokal, R., et al.: Intraperitoneal chemotherapy. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K. (eds.) Textbook of Peritoneal Dialysis, pp. s809–s827. Kluwer Academic, Dordrecht (2000)
Flessner, M.F., Lofthouse, J., Zakaria, E.R.: In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am. J. Physiol. 273(6 Pt 2), H2783–H2793 (1997)
Flessner, M.F.: The importance of the interstitium in peritoneal transport. Perit. Dial. Int. 16(suppl. 1), S76–S79 (1996a)
Flessner, M.F.: Small-solute transport across specific peritoneal tissue surfaces in the rat. J. Am. Soc. Nephrol. 7(2), 225–233 (1996b)
Flessner, M.F., Schwab, A.: Pressure threshold for fluid loss from the peritoneal cavity. Am. J. Physiol. 270(2 Pt 2), F377–F390 (1996)
Flessner, M.F., Dedrick, R.L.: Monoclonal antibody delivery to intraperitoneal tumors in rats: effects of route of administration and intraperitoneal solution osmolality. Cancer Res. 54(16), 4376–4384 (1994)
Flessner, M.F.: Net ultrafiltration in peritoneal dialysis: Role of direct fluid absorption into peritoneal tissue. Blood Purif. 10(3-4), 136–147 (1992)
Flessner, M.F., Dedrick, R.L., Reynolds, J.C.: Bidirectional peritoneal transport of immunoglobulin in rats: compartmental kinetics. Am. J. Physiol. 262(2 Pt 2), F275–F287 (1992a)
Flessner, M.F., Dedrick, R.L., Reynolds, J.C.: Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles. Am. J. Physiol. 263(1 Pt 2), F15–F23 (1992b)
Flessner, M.F.: Peritoneal transport physiology: insights from basic research. J. Am. Soc. Nephrol. 2(2), 122–135 (1991)
Flessner, M.F., Dedrick, R.L., Rippe, B.: Estimation of Lymphatic Absorption and Intraperitoneal Volume During Hypertonic Peritoneal Dialysis. ASAIO Trans. 35(2), 178–181 (1989)
Flessner, M.F., Dedrick, R.L., Schultz, J.S.: A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am. J. Physiol. 248(3 Pt 2), F413–F424 (1985a)
Flessner, M.F., Dedrick, R.L., Schultz, J.S.: Exchange of macromolecules between peritoneal cavity and plasma. Am. J. Physiol. 248(1 Pt 2), H15–H25 (1985b)
Flessner, M.F., Fenstermacher, J.D., Blasberg, R.G., Dedrick, R.L.: Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am. J. Physiol. 248(1 Pt 2), H26–H32 (1985c)
Flessner, M.F., Fenstermacher, J.D., Dedrick, R.L., Blasberg, R.G.: A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am. J. Physiol. 248(3 Pt 2), 425–435 (1985d)
Flessner, M.F., Dedrick, R.L., Schultz, J.S.: A distributed model of peritoneal-plasma transport: theoretical consideratons. Am. J. Physiol. 246(4 Pt 2), R597–R607 (1984)
Flessner, M.F., Parker, R.J., Sieber, S.M.: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am. J. Physiol. 244(1), H89–H96 (1983)
Fu, B.M., Curry, F.E., Weinbaum, S.: A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. Am. J. Physiol. 269(6 Pt 2), H2124–H2140 (1995)
Goel, R., Cleary, S.M., Horton, C., Howell, S.: Effect sodium thiosulfate on the pharmacokinetics and toxicity of cisplatin. J. Natl. Cancer Inst. 81(20), 1552–1560 (1989)
Gotloib, L., Mines, M., Garmizo, L., Varka, I.: Hemodynamic effects of increasing intra-abdominal pressure in peritoneal dialysis. Peritoneal Dial. Bull. 1, 41–43 (1981)
Henry, C.B.S., Duling, B.R.: Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277(2 Pt 2), H508–H514 (1999)
Henry, C.B.S., Duling, B.R.: TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279(6), H2815–H2823 (2000)
Hollinshead, W.H.: Textbook of Anatomy, pp. 623–638. Harper and Row, New York (1962)
Hu, X., Weinbaum, S.: A new view of Starling’s hypothesis at the microstructural level. Microvasc. Res. 58(3), 281–304 (1999)
Joffe, P., Henriksen, J.H.: Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 10(9), 1725–1732 (1995)
Kim, M., Lofthouse, J., Flessner, M.F.: Blood flow limitations of solute transport across the visceral peritoneum. J. Am. Soc. Nephrol. 8(12), 1946–1950 (1997a)
Kim, M., Lofthouse, J., Flessner, M.F.: A method to test blood flow limitation of peritoneal-blood solute transport. J. Am. Soc. Nephrol. 8(3), 471–474 (1997b)
King, F.G., Dedrick, R., Farris, F.F.: Physiological pharmacokinetic modeling of cis-dichlorodiammineplatinum (II) (DDP) in several species. J. Pharmacokinet Biopharm. 14(2), 131–155 (1986)
Klitzman, B., Duling, B.R.: Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am. J. Physiol. 237(4), H481–H490 (1979)
Krediet, R.T., Imholz, A.L., Zemel, D., et al.: Clinical significance and detection of individual differences and changes in transperitoneal transport. Blood Purif. 12(4-5), 221–232 (1994)
Lasrich, M., Maher, J.M., Hirszel, P., Maher, J.F.: Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO Journal 2, 107–113 (1979)
Laurent, T.C., Reed, R.K., McHale, N.G., et al.: Structure of the extracellular matrix and the biology of hyaluronan. In: Reed, R.K., McHale, N.G., Bert, J.L., et al. (eds.) Interstitium, Connective Tissue, and Lymphatics, pp. 1–12. Portland Press, London (1995)
Levick, J.R.: Revision of the Starling principle: new views of tissue fluid balance. J. Physiol. 557(Pt 3), 704 (2004)
Lewis, C., Lawson, N., Rankin, E.M., et al.: Phase I and pharmacokinetic study of intraperitoneal thioTEPA in patients with ovarian cancer. Cancer Chemother. Pharmacol. 26(4), 283–287 (1990)
Leypoldt, J.K.: Solute transport across the peritoneal membrane. J. Am. Soc. Nephrol. 13(suppl. 1), S84–S91 (2002)
Mactier, R.A., Khanna, R., Twardowski, Z., Nolph, K.D.: Role of peritoneal cavity lymphatic absorption in peritoneal dialysis. Kidney Int. 32(2), 165–172 (1987a)
Mactier, R.A., Khanna, R., Twardowski, Z.J., Nolph, K.D.: Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in CAPD. J. Clin. Invest. 80(5), 1311–1316 (1987b)
Markman, M.: Intraperitoneal chemotherapy in the management of colon cancer. Semin. Oncol. 26(5), 536–539 (1999)
Markman, M., Reichmann, B., Hakes, T.: Impact on survival of surgically defined favorable responses to salvage intraperitoneal chemotherapy in small-volume residual ovarian cancer. J. Clin. Oncol. 10(9), 1479–1484 (1992)
Markman, M., Walker, J.L.: Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J. Clin. Oncol. 24(6), 988–994 (2006)
Matzke, G.R., McGory, R.W., Halstenson, C.E., Keane, W.F.: Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob. Agents Chemother. 25(4), 433–437 (1984)
McGowan, L., Davis, R.H., Stein, D.B., Bebon, S., Vaskelis, P.: The cytology of the pelvic peritoneal cavity in normal women. Am. J. Clin. Pathol. 49(4), 506–511 (1968)
Moellering, R.C.: Pharmacokinetics of vancomycin. J. Antimicrob. Chemother. 14(suppl. D), D43–D52 (1984)
Morrison, P.F., Dedrick, R.: Transport of cisplatin in rat brain following microinfusion: an analysis. J. Pharm. Sci. 75(2), 120–128 (1986)
Ni, J., Verbavatz, J.M., Rippe, A., et al.: Aquaporin-1 plays and essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 69(9), 1518–1525 (2006)
Nolph, K.D., Miller, F., Rubin, J., Popovich, R.: New directions in peritoneal dialysis concepts and applications. Kidney Int. 10(Suppl.), 111–116 (1980)
Nolph, K.D., Twardowski, Z., Nolph, K.: Peritoneal Dialysis, pp. 13–27. Kluwer Academic, Dordrecht (1989)
Pappenheimer, J.R., Renkin, E.M., Borrero, L.M.: Filtration, diffusion, and molecular sieving through peripheral capillary membranes. A contribution to the Pore theory of capillary permeability. Am. J. Physiol. 167(1), 13–46 (1951)
Platts, S.H., Duling, B.R.: Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ. Res. 94(1), 77–82 (2004)
Platts, S.H., Linden, J., Duling, B.R.: Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. Am. J. Physiol. Heart Circ. Physiol. 284(6), H2360–H2367 (2003)
Popovich, R.P., Pyle, W.K., Moncrief, J.W.: Peritoneal dialysis. In: Vil-larroel, F., Dedrick, R.L. (eds.) Chronic Replacement of Kidney Function, New York. AIChE Symp. Series, vol. 187, pp. 31–45 (1979)
Pyle, W.K., Popovich, R.P., Moncrief, J.W.: Mass transfer evaluation in peritoneal dialysis. In: Moncrief, J.W., Popovich, R.P. (eds.) CAPD Update, pp. 35–52. Masson, New York (1981)
Reed, R.K.: Interstitial fluid volume, colloid osmotic and hydrostatic pressure in rat skeletal muscle. Effect of venous stasis and muscle activity. Acta Physiol. Scand. 112(1), 7–17 (1981)
Rippe, B.: A three-pore model of peritoneal transport. Perit. Dial. Int. 13(suppl. 2), S35–S38 (1993)
Rippe, B., Haraldsson, B.: Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol. Scand. 131(3), 411–428 (1987)
Rippe, B., Haraldsson, B.: Transport of macromolecules across microvascular walls: the two-pore theory. Physiol. Rev. 74(1), 163–219 (1994)
Rippe, B., Stelin, G.: Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 35(5), 1234–1244 (1989)
Rippe, B., Stelin, G., Ahlmen, J.: Lymph flow from the peritoneal cavity in CAPD patients. In: Maher, J.F., Winchester, J.F. (eds.) Frontiers in Peritoneal Dialysis, pp. 24–30. Field, Rich and Associates Inc., New York (1986)
Rippe, B., Stelin, G., Haraldsson, B.: Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 40(2), 315–325 (1991)
Rippe, B., Venturoli, D.: Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am. J. Physiol. Renal. Physiol. 292(3), F1035–F1043 (2007)
Rotschafer, J.C., Crossley, K., Zaske, D.E., et al.: Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob. Agents Chemother. 22(3), 391–394 (1982)
Rubin, J., Clawson, M., Planch, A., Jones, Q.: Measurements of peritoneal surface area in man and rat. Am. J. Med. Sci. 295(5), 453–458 (1988)
Rubin, K., Sundberq, C., Ahlen, K., Reed, R.K.: Integrins: transmembrane links between the extracellular matrix and the cell interior. In: Reed, R.K., Mattale, N.G., Bert, J.L., et al. (eds.) Interstitium, Connective Tissue, and Lymphatics, pp. 29–40. Portland Press Ltd., London (1995)
Rubio-Gayosso, I., Platts, S.H., Duling, B.R.: Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 290(6), H2247–H2256 (2006)
Rusznyak, T., Foldi, M., Szabo, G.: Lymphatics and Lymph Circulation, 2nd edn. Pergamon Press, London (1967)
Seames, E.L., Moncrief, J.W., Popovich, R.P.: A distributed model of fluid and mass transfer in peritoneal dialysis. Am. J. Physiol. 258(4 Pt 2), R958–R972 (1990)
Schad, H., Brechtelsbauer, H.: Thoracic duct lymph in conscious dog at rest and during changes of physical activity. Pflugers Arch. 367(3), 235–240 (1977)
Stachowska-Pietka, J., Waniewski, J., Flessner, M.F., Lindholm, B.: A distributed model of bidirectional protein transport during peritoneal fluid absorption. Adv. Perit. Dial. 23, 23–27 (2007)
Stelin, G., Rippe, B.: A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int. 38(3), 465–472 (1990)
Torres, I.J., Litterst, C.I., Guarino, A.M.: Transport of model compounds across the peritoneal membrane in the rat. Pharmacology 17(6), 330–340 (1978)
Twardowski, Z., Nolph, K., Khanna, R., et al.: Peritoneal equilibration test. Perit. Dial. Int. 7(3), 138–148 (1987)
Twardowski, Z.J., Prowant, B.F., Nolph, K.D., et al.: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int. 23(1), 64–70 (1983)
VanTeeffelen, J.W., Dekker, S., Fokkema, D.S., et al.: Hyaluronidase treatment of coronary glycocalyx increases reactive hyperemia but not adenosine hyperemia in dog hearts. Am. J. Physiol. Heart Circ. Physiol. 289(6), H2508–H2513 (2005)
Venturoli, D., Rippe, B.: Transport asymmetry in peritoneal dialysis: application of a serial heteroporous peritoneal membrane model. Am. J. Physiol. Renal Physiol. 280(4), F599–F606 (2001)
Vink, H., Duling, B.R.: Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79(3), 581–589 (1996)
Vonesh, E.F., Rippe, B.: Net fluid absorption under membrane transport models of peritoneal dialysis. Blood Purif. 10(3-4), 209–226 (1992)
Waniewski, J., Heimburger, O., Werynski, A., Lindholm, B.: Simple models for fluid transport during peritoneal dialysis. Int. J. Artif. Organs 19(8), 455–466 (1996)
Waniewski, J., Stachowska-Pietka, J., Flessner, M.F.: Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. Am. J. Physiol. Heart Circ. Physiol. 296(6), H1960–H1968 (2009)
Waniewski, J., Werynski, A., Heimburger, O., Lindholm, B.: Simple membrane models for peritoneal dialysis. Evaluation of diffusive and convective solute transport. ASAIO J. 38(4), 788–796 (1992)
Waniewski, J., Werynski, A., Heimburger, O., et al.: Effect of alternative osmotic agents on peritoneal transport. Blood Purif. 11(4), 248–264 (1993)
Weinbaum, S., Zhang, X., Han, Y., et al.: Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100(13), 7988–7995 (2003)
Wikes, A.D., Howell, S.: Pharmacokinetics of hexamethylmelamine adminiistered via the ip route in and oil emulsion vehicle. Cancer Treat. Rep. 69(6), 657–662 (1985)
Yanez-Mo, M., Lara-Pezzi, E., Selgas, R., et al.: Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl. J. Med. 348(5), 403–413 (2003)
Yang, B., Folkesson, H.G., Yang, J., et al.: Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am. J. Physiol. 276(1 Pt 1), C76–C81 (1999)
Yoffey, J.M., Courtice, F.C.: Lymph flow from regional lymphatics. In: Yoffey, J.M., Courtice, F.C. (eds.) Lymphatics, Lymph, and the Lympho-Myeloid Complex, 1st edn., pp. 295–309. Academic Press, New York (1970)
Zakaria, E.R., Lofthouse, J., Flessner, M.F.: Effect of intraperitoneal pressures on tissue water of the abdominal muscle. Am. J. Physiol. Renal Physiol. 278(6), F875–F885 (2000)
Zakaria, E.R., Lofthouse, J., Flessner, M.F.: Hydrostatic and osmotic pressures modulate partitioning of tissue water in abdominal muscle during dialysis. Perit. Dial. Int. 19(suppl. 2), S208–S211 (1999a)
Zakaria, E.R., Lofthouse, J., Flessner, M.F.: In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am. J. Physiol. 276(2 Pt 2), H517–H529 (1999b)
Zakaria, E.R., Lofthouse, J., Flessner, M.F.: In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am. J. Physiol. 273(6 Pt 2), H2774–H2782 (1997)
Zhang, X., Adamson, R.H., Curry, F.E., Weinbaum, S.: A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle. Am. J. Physiol. Heart Circ. Physiol. 291(6), H2950–H2964 (2006)
Zhu, Q., Carlsson, O., Rippe, B.: Clearance of tracer albumin from peritoneal cavity to plasma at low intraperitoneal volumes and hydrostatic pressures. Perit. Dial. Int. 18(5), 497–504 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Flessner, M.F. (2013). Kinetic Modeling of Peritoneal Dialysis. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-27558-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27557-9
Online ISBN: 978-3-642-27558-6
eBook Packages: EngineeringEngineering (R0)