Skip to main content

Kinetic Modeling of Peritoneal Dialysis

  • Chapter
Modeling and Control of Dialysis Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 405))

Abstract

This chapter presents the anatomy and physiology of the peritoneal barrier as background for understanding the complex process of the transperitoneal transport system. Kinetic models are presented in three general forms: membrane models, compartmental models, and distributed models. Applications of each of these are offered to illustrate the use of each model scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamson, R.H., Lenz, J.F., Zhang, X., et al.: Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557(Pt 3), 889–907 (2004)

    Article  Google Scholar 

  • Agre, P., Preston, G.M., Smith, B.L., et al.: Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265(4 Pt 2), F463–F476 (1993)

    Google Scholar 

  • Alberts, D.S., Liu, P.Y., Hannigan, E.V., et al.: Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl. J. Med. 335(26), 1950–1955 (1996)

    Article  Google Scholar 

  • Allen, L.: On the penetrability of the lymphatics of the diaphragm. Anat. Rec. 124(4), 639–657 (1956)

    Article  Google Scholar 

  • Allen, L., Weatherford, T.: Role of the fenestrated basement membrane in lymphatic absorption from the peritoneal cavity. Am. J. Physiol. 197, 551–554 (1959)

    Google Scholar 

  • Aroeira, L.S., Aguilera, A., Sanchez-Tomero, J.A., et al.: Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18(7), 2004–2013 (2007)

    Article  Google Scholar 

  • Babb, A.L., Johansen, P.J., Strand, M.J., et al.: Bidirectional permeability of the human peritoneum to middle molecules. In: Proc. Eur. Dial. Transplant. Assoc., vol. 10, pp. 247–262 (1973)

    Google Scholar 

  • Barakat, R.R., Sabbatini, P., Bhaskaran, D., et al.: Intraperitoneal chemotherapy for ovarian carcinoma: results of long-term follow-up. J. Clin. Oncol. 20(3), 694–698 (2002)

    Article  Google Scholar 

  • Baron, M.A.: Structure of the intestinal peritoneum in man. American Journal of Anatomy 69, 439–497 (1941)

    Article  Google Scholar 

  • Bettendorf, U.: Electronmicroscopic studies on the peritoneal resorption of intraperitioneally injected latex particles via the diaphragmatic lymphatics. Lymphology 12(2), 66–70 (1979)

    Google Scholar 

  • Bettendorf, U.: Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology 11(3), 111–116 (1978)

    Google Scholar 

  • Bomar, J.B., Decherd, J.F., Hlavinka, D.J., et al.: The elucidation of maximum efficiency-minimum cost peritoneal dialysis protocols. Trans. Am. Soc. Artif. Intern. Organs 20A, 120–129 (1974)

    Google Scholar 

  • Boucher, Y., Baxter, L.T., Jain, R.K.: Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 50(15), 4478–4484 (1990)

    Google Scholar 

  • Bunke, C.M., Aronoff, G.R., Brier, M.E., et al.: Vancomycin kinetics during continuous ambulatory peritoneal dialysis. Clin. Pharmacol. Ther. 34(5), 631–637 (1983)

    Article  Google Scholar 

  • Carnahan, B., Luther, H.A., Wilkes, J.O.: Applied Numerical Methods, pp. 464–481. John Wiley & Sons, New York (1969)

    MATH  Google Scholar 

  • Chagnac, A., Herskovitz, P., Ori, Y., et al.: Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J. Am. Soc. Nephrol. 13(10), 2554–2559 (2002)

    Article  Google Scholar 

  • Chagnac, A., Herskovitz, P., Weinstein, T., et al.: The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. J. Am. Soc. Nephrol. 10(2), 342–346 (1999)

    Google Scholar 

  • Chang, R.L.S.: A model of capillary solutes and fluid exchange. Chem. Eng. Commun. 4(1), 189–206 (1980)

    Article  Google Scholar 

  • Chang, R.S., Robertson, C.R., Deen, W.M., Brenner, B.M.: Permeability of the glomerular capillary wall to macromolecules I. Theoretical considerations. Biophys. J. 15(9), 861–886 (1975)

    Article  Google Scholar 

  • Collins, J.M.: Inert gas exchange of subcutaneous and intraperitoneal gas pockets in piglets. Respir. Physiol. 46(3), 391–404 (1981)

    Article  Google Scholar 

  • Courtice, F.C., Steinbeck, A.W.: The lymphatic drainage of plasma from the peritioneal cavity of the cat. Aust. J. Exp. Biol. Med. Sci. 28(2), 161–169 (1950)

    Article  Google Scholar 

  • Cunha, B.A., Ristuccia, A.M.: Clinical usefulness of vancomycin. Clin. Pharm. 2(5), 417–424 (1983)

    Google Scholar 

  • Cutler, N.R., Narang, P.K., Lesko, L.J., et al.: Vancomycin disposition: the importance of age. Clin. Pharmacol. Ther. 36(6), 803–810 (1984)

    Article  Google Scholar 

  • Daugirdas, J.T., Ing, T.S., Gandhi, V.C., et al.: Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J. Lab. Clin. Med. 95(3), 351–361 (1980)

    Google Scholar 

  • Dedrick, R.L.: Interspecies scaling of regional drug delivery. J. Pharm. Sci. 75(11), 1047–1052 (1986)

    Article  Google Scholar 

  • Dedrick, R.L., Flessner, M.F.: Pharmacokinetic considerations on monoclonal antibodies. Prog. Clin. Biol. Res. 288, 429–438 (1989)

    Google Scholar 

  • Dedrick, R.L., Myers, C.E., Bungay, P.M., DeVita, V.T.: Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 62(1), 1–11 (1978)

    Google Scholar 

  • Demissachew, H., Lofthouse, J., Flessner, M.F.: Tissue sources and blood flow limitations of osmotic water transport across the peritoneum. J. Am. Soc. Nephrol. 10(2), 347–353 (1999)

    Google Scholar 

  • DiZerga, G.: Peritoneal Surgury. Springer, New York (2000)

    Book  Google Scholar 

  • Dobbie, J.W., Anderson, J.D., Hind, C.: Long-term effects of peritoneal dialysis on peritoneal morphology. Perit. Dial. Int. 14(suppl. 3), S16–S20 (1994)

    Google Scholar 

  • Dulaney, J.T., Hatch, F.E.: Peritoneal dialysis and loss of proteins: a review. Kidney Int. 26(3), 253–262 (1984)

    Article  Google Scholar 

  • Dykes, P.W., Jones, J.H.: Albumin exchange between plasma and ascites fluid. Clin. Sci. 34(1), 185–197 (1968)

    Google Scholar 

  • Elk, J.R., Adair, T., Drake, R.E., Gabel, J.C.: The effect of anesthesia and surgery on diaphragmatic lymph vessel flow after endotoxin in sheep. Lymphology 23(3), 145–148 (1990)

    Google Scholar 

  • Flessner, M.F., Credit, K., Richardson, K., et al.: Peritoneal Inflammation after 20-Week Exposure to Dialysis Solution: Effect of Solution versus Catheter-Foreign Body Reaction. Perit. Dial. Int. 30(3), 284–293 (2010)

    Article  Google Scholar 

  • Flessner, M.F.: The transport barrier in intraperitoneal therapy. Am. J. Physiol. Renal. Physiol. 288(3), F433–F442 (2005)

    Article  Google Scholar 

  • Flessner, M.F., Choi, J., Credit, K., et al.: Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin. Cancer Res. 11(8), 3117–3125 (2005)

    Article  Google Scholar 

  • Flessner, M.F., Choi, J., He, Z., Credit, K.: Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy. J. Appl. Physiol. 97(4), 1518–1526 (2004)

    Article  Google Scholar 

  • Flessner, M.F., Henegar, J., Bigler, S., Genous, L.: Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit. Dial. Int. 23(6), 542–549 (2003)

    Google Scholar 

  • Flessner, M.F.: The role of extracellular matrix in transperitoneal transport of water and solutes. Perit. Dial. Int. 21(suppl. 3), S24–S29 (2001a)

    Google Scholar 

  • Flessner, M.F.: Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach. Am. J. Physiol. Gastrointest Liver Physiol. 281(2), G424–G437 (2001b)

    Google Scholar 

  • Flessner, M.F., Lofthouse, J., Williams, A.: Increasing peritoneal contact area during dialysis improves mass transfer. J. Am. Soc. Nephrol. 12(10), 2139–2145 (2001a)

    Google Scholar 

  • Flessner, M.F., Lofthouse, J., Zakaria, E.R.: Improving contact area between the peritoneum and intraperitoneal therapeutic solutions. J. Am. Soc. Nephrol. 12(4), 807–813 (2001b)

    Google Scholar 

  • Flessner, M.F., Dedrick, R., Gokal, R., et al.: Intraperitoneal chemotherapy. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K. (eds.) Textbook of Peritoneal Dialysis, pp. s809–s827. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  • Flessner, M.F., Lofthouse, J., Zakaria, E.R.: In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am. J. Physiol. 273(6 Pt 2), H2783–H2793 (1997)

    Google Scholar 

  • Flessner, M.F.: The importance of the interstitium in peritoneal transport. Perit. Dial. Int. 16(suppl. 1), S76–S79 (1996a)

    Google Scholar 

  • Flessner, M.F.: Small-solute transport across specific peritoneal tissue surfaces in the rat. J. Am. Soc. Nephrol. 7(2), 225–233 (1996b)

    Google Scholar 

  • Flessner, M.F., Schwab, A.: Pressure threshold for fluid loss from the peritoneal cavity. Am. J. Physiol. 270(2 Pt 2), F377–F390 (1996)

    Google Scholar 

  • Flessner, M.F., Dedrick, R.L.: Monoclonal antibody delivery to intraperitoneal tumors in rats: effects of route of administration and intraperitoneal solution osmolality. Cancer Res. 54(16), 4376–4384 (1994)

    Google Scholar 

  • Flessner, M.F.: Net ultrafiltration in peritoneal dialysis: Role of direct fluid absorption into peritoneal tissue. Blood Purif. 10(3-4), 136–147 (1992)

    Article  Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Reynolds, J.C.: Bidirectional peritoneal transport of immunoglobulin in rats: compartmental kinetics. Am. J. Physiol. 262(2 Pt 2), F275–F287 (1992a)

    Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Reynolds, J.C.: Bidirectional peritoneal transport of immunoglobulin in rats: tissue concentration profiles. Am. J. Physiol. 263(1 Pt 2), F15–F23 (1992b)

    Google Scholar 

  • Flessner, M.F.: Peritoneal transport physiology: insights from basic research. J. Am. Soc. Nephrol. 2(2), 122–135 (1991)

    Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Rippe, B.: Estimation of Lymphatic Absorption and Intraperitoneal Volume During Hypertonic Peritoneal Dialysis. ASAIO Trans. 35(2), 178–181 (1989)

    Article  Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Schultz, J.S.: A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am. J. Physiol. 248(3 Pt 2), F413–F424 (1985a)

    Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Schultz, J.S.: Exchange of macromolecules between peritoneal cavity and plasma. Am. J. Physiol. 248(1 Pt 2), H15–H25 (1985b)

    Google Scholar 

  • Flessner, M.F., Fenstermacher, J.D., Blasberg, R.G., Dedrick, R.L.: Peritoneal absorption of macromolecules studied by quantitative autoradiography. Am. J. Physiol. 248(1 Pt 2), H26–H32 (1985c)

    Google Scholar 

  • Flessner, M.F., Fenstermacher, J.D., Dedrick, R.L., Blasberg, R.G.: A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am. J. Physiol. 248(3 Pt 2), 425–435 (1985d)

    Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Schultz, J.S.: A distributed model of peritoneal-plasma transport: theoretical consideratons. Am. J. Physiol. 246(4 Pt 2), R597–R607 (1984)

    Google Scholar 

  • Flessner, M.F., Parker, R.J., Sieber, S.M.: Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am. J. Physiol. 244(1), H89–H96 (1983)

    Google Scholar 

  • Fu, B.M., Curry, F.E., Weinbaum, S.: A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. Am. J. Physiol. 269(6 Pt 2), H2124–H2140 (1995)

    Google Scholar 

  • Goel, R., Cleary, S.M., Horton, C., Howell, S.: Effect sodium thiosulfate on the pharmacokinetics and toxicity of cisplatin. J. Natl. Cancer Inst. 81(20), 1552–1560 (1989)

    Article  Google Scholar 

  • Gotloib, L., Mines, M., Garmizo, L., Varka, I.: Hemodynamic effects of increasing intra-abdominal pressure in peritoneal dialysis. Peritoneal Dial. Bull. 1, 41–43 (1981)

    Google Scholar 

  • Henry, C.B.S., Duling, B.R.: Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277(2 Pt 2), H508–H514 (1999)

    Google Scholar 

  • Henry, C.B.S., Duling, B.R.: TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 279(6), H2815–H2823 (2000)

    Google Scholar 

  • Hollinshead, W.H.: Textbook of Anatomy, pp. 623–638. Harper and Row, New York (1962)

    Google Scholar 

  • Hu, X., Weinbaum, S.: A new view of Starling’s hypothesis at the microstructural level. Microvasc. Res. 58(3), 281–304 (1999)

    Article  Google Scholar 

  • Joffe, P., Henriksen, J.H.: Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 10(9), 1725–1732 (1995)

    Google Scholar 

  • Kim, M., Lofthouse, J., Flessner, M.F.: Blood flow limitations of solute transport across the visceral peritoneum. J. Am. Soc. Nephrol. 8(12), 1946–1950 (1997a)

    Google Scholar 

  • Kim, M., Lofthouse, J., Flessner, M.F.: A method to test blood flow limitation of peritoneal-blood solute transport. J. Am. Soc. Nephrol. 8(3), 471–474 (1997b)

    Google Scholar 

  • King, F.G., Dedrick, R., Farris, F.F.: Physiological pharmacokinetic modeling of cis-dichlorodiammineplatinum (II) (DDP) in several species. J. Pharmacokinet Biopharm. 14(2), 131–155 (1986)

    Article  Google Scholar 

  • Klitzman, B., Duling, B.R.: Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am. J. Physiol. 237(4), H481–H490 (1979)

    Google Scholar 

  • Krediet, R.T., Imholz, A.L., Zemel, D., et al.: Clinical significance and detection of individual differences and changes in transperitoneal transport. Blood Purif. 12(4-5), 221–232 (1994)

    Article  Google Scholar 

  • Lasrich, M., Maher, J.M., Hirszel, P., Maher, J.F.: Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO Journal 2, 107–113 (1979)

    Google Scholar 

  • Laurent, T.C., Reed, R.K., McHale, N.G., et al.: Structure of the extracellular matrix and the biology of hyaluronan. In: Reed, R.K., McHale, N.G., Bert, J.L., et al. (eds.) Interstitium, Connective Tissue, and Lymphatics, pp. 1–12. Portland Press, London (1995)

    Google Scholar 

  • Levick, J.R.: Revision of the Starling principle: new views of tissue fluid balance. J. Physiol. 557(Pt 3), 704 (2004)

    Article  Google Scholar 

  • Lewis, C., Lawson, N., Rankin, E.M., et al.: Phase I and pharmacokinetic study of intraperitoneal thioTEPA in patients with ovarian cancer. Cancer Chemother. Pharmacol. 26(4), 283–287 (1990)

    Article  Google Scholar 

  • Leypoldt, J.K.: Solute transport across the peritoneal membrane. J. Am. Soc. Nephrol. 13(suppl. 1), S84–S91 (2002)

    Google Scholar 

  • Mactier, R.A., Khanna, R., Twardowski, Z., Nolph, K.D.: Role of peritoneal cavity lymphatic absorption in peritoneal dialysis. Kidney Int. 32(2), 165–172 (1987a)

    Article  Google Scholar 

  • Mactier, R.A., Khanna, R., Twardowski, Z.J., Nolph, K.D.: Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in CAPD. J. Clin. Invest. 80(5), 1311–1316 (1987b)

    Article  Google Scholar 

  • Markman, M.: Intraperitoneal chemotherapy in the management of colon cancer. Semin. Oncol. 26(5), 536–539 (1999)

    Google Scholar 

  • Markman, M., Reichmann, B., Hakes, T.: Impact on survival of surgically defined favorable responses to salvage intraperitoneal chemotherapy in small-volume residual ovarian cancer. J. Clin. Oncol. 10(9), 1479–1484 (1992)

    Google Scholar 

  • Markman, M., Walker, J.L.: Intraperitoneal chemotherapy of ovarian cancer: a review, with a focus on practical aspects of treatment. J. Clin. Oncol. 24(6), 988–994 (2006)

    Article  Google Scholar 

  • Matzke, G.R., McGory, R.W., Halstenson, C.E., Keane, W.F.: Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob. Agents Chemother. 25(4), 433–437 (1984)

    Article  Google Scholar 

  • McGowan, L., Davis, R.H., Stein, D.B., Bebon, S., Vaskelis, P.: The cytology of the pelvic peritoneal cavity in normal women. Am. J. Clin. Pathol. 49(4), 506–511 (1968)

    Google Scholar 

  • Moellering, R.C.: Pharmacokinetics of vancomycin. J. Antimicrob. Chemother. 14(suppl. D), D43–D52 (1984)

    Article  Google Scholar 

  • Morrison, P.F., Dedrick, R.: Transport of cisplatin in rat brain following microinfusion: an analysis. J. Pharm. Sci. 75(2), 120–128 (1986)

    Article  Google Scholar 

  • Ni, J., Verbavatz, J.M., Rippe, A., et al.: Aquaporin-1 plays and essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 69(9), 1518–1525 (2006)

    Article  Google Scholar 

  • Nolph, K.D., Miller, F., Rubin, J., Popovich, R.: New directions in peritoneal dialysis concepts and applications. Kidney Int. 10(Suppl.), 111–116 (1980)

    Google Scholar 

  • Nolph, K.D., Twardowski, Z., Nolph, K.: Peritoneal Dialysis, pp. 13–27. Kluwer Academic, Dordrecht (1989)

    Book  Google Scholar 

  • Pappenheimer, J.R., Renkin, E.M., Borrero, L.M.: Filtration, diffusion, and molecular sieving through peripheral capillary membranes. A contribution to the Pore theory of capillary permeability. Am. J. Physiol. 167(1), 13–46 (1951)

    Google Scholar 

  • Platts, S.H., Duling, B.R.: Adenosine A3 receptor activation modulates the capillary endothelial glycocalyx. Circ. Res. 94(1), 77–82 (2004)

    Article  Google Scholar 

  • Platts, S.H., Linden, J., Duling, B.R.: Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine A2A receptor activation. Am. J. Physiol. Heart Circ. Physiol. 284(6), H2360–H2367 (2003)

    Google Scholar 

  • Popovich, R.P., Pyle, W.K., Moncrief, J.W.: Peritoneal dialysis. In: Vil-larroel, F., Dedrick, R.L. (eds.) Chronic Replacement of Kidney Function, New York. AIChE Symp. Series, vol. 187, pp. 31–45 (1979)

    Google Scholar 

  • Pyle, W.K., Popovich, R.P., Moncrief, J.W.: Mass transfer evaluation in peritoneal dialysis. In: Moncrief, J.W., Popovich, R.P. (eds.) CAPD Update, pp. 35–52. Masson, New York (1981)

    Google Scholar 

  • Reed, R.K.: Interstitial fluid volume, colloid osmotic and hydrostatic pressure in rat skeletal muscle. Effect of venous stasis and muscle activity. Acta Physiol. Scand. 112(1), 7–17 (1981)

    Article  Google Scholar 

  • Rippe, B.: A three-pore model of peritoneal transport. Perit. Dial. Int. 13(suppl. 2), S35–S38 (1993)

    Google Scholar 

  • Rippe, B., Haraldsson, B.: Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol. Scand. 131(3), 411–428 (1987)

    Article  Google Scholar 

  • Rippe, B., Haraldsson, B.: Transport of macromolecules across microvascular walls: the two-pore theory. Physiol. Rev. 74(1), 163–219 (1994)

    Article  Google Scholar 

  • Rippe, B., Stelin, G.: Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 35(5), 1234–1244 (1989)

    Article  Google Scholar 

  • Rippe, B., Stelin, G., Ahlmen, J.: Lymph flow from the peritoneal cavity in CAPD patients. In: Maher, J.F., Winchester, J.F. (eds.) Frontiers in Peritoneal Dialysis, pp. 24–30. Field, Rich and Associates Inc., New York (1986)

    Google Scholar 

  • Rippe, B., Stelin, G., Haraldsson, B.: Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 40(2), 315–325 (1991)

    Article  Google Scholar 

  • Rippe, B., Venturoli, D.: Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am. J. Physiol. Renal. Physiol. 292(3), F1035–F1043 (2007)

    Article  Google Scholar 

  • Rotschafer, J.C., Crossley, K., Zaske, D.E., et al.: Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob. Agents Chemother. 22(3), 391–394 (1982)

    Article  Google Scholar 

  • Rubin, J., Clawson, M., Planch, A., Jones, Q.: Measurements of peritoneal surface area in man and rat. Am. J. Med. Sci. 295(5), 453–458 (1988)

    Article  Google Scholar 

  • Rubin, K., Sundberq, C., Ahlen, K., Reed, R.K.: Integrins: transmembrane links between the extracellular matrix and the cell interior. In: Reed, R.K., Mattale, N.G., Bert, J.L., et al. (eds.) Interstitium, Connective Tissue, and Lymphatics, pp. 29–40. Portland Press Ltd., London (1995)

    Google Scholar 

  • Rubio-Gayosso, I., Platts, S.H., Duling, B.R.: Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 290(6), H2247–H2256 (2006)

    Article  Google Scholar 

  • Rusznyak, T., Foldi, M., Szabo, G.: Lymphatics and Lymph Circulation, 2nd edn. Pergamon Press, London (1967)

    Google Scholar 

  • Seames, E.L., Moncrief, J.W., Popovich, R.P.: A distributed model of fluid and mass transfer in peritoneal dialysis. Am. J. Physiol. 258(4 Pt 2), R958–R972 (1990)

    Google Scholar 

  • Schad, H., Brechtelsbauer, H.: Thoracic duct lymph in conscious dog at rest and during changes of physical activity. Pflugers Arch. 367(3), 235–240 (1977)

    Article  Google Scholar 

  • Stachowska-Pietka, J., Waniewski, J., Flessner, M.F., Lindholm, B.: A distributed model of bidirectional protein transport during peritoneal fluid absorption. Adv. Perit. Dial. 23, 23–27 (2007)

    Google Scholar 

  • Stelin, G., Rippe, B.: A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int. 38(3), 465–472 (1990)

    Article  Google Scholar 

  • Torres, I.J., Litterst, C.I., Guarino, A.M.: Transport of model compounds across the peritoneal membrane in the rat. Pharmacology 17(6), 330–340 (1978)

    Article  Google Scholar 

  • Twardowski, Z., Nolph, K., Khanna, R., et al.: Peritoneal equilibration test. Perit. Dial. Int. 7(3), 138–148 (1987)

    Google Scholar 

  • Twardowski, Z.J., Prowant, B.F., Nolph, K.D., et al.: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int. 23(1), 64–70 (1983)

    Article  Google Scholar 

  • VanTeeffelen, J.W., Dekker, S., Fokkema, D.S., et al.: Hyaluronidase treatment of coronary glycocalyx increases reactive hyperemia but not adenosine hyperemia in dog hearts. Am. J. Physiol. Heart Circ. Physiol. 289(6), H2508–H2513 (2005)

    Article  Google Scholar 

  • Venturoli, D., Rippe, B.: Transport asymmetry in peritoneal dialysis: application of a serial heteroporous peritoneal membrane model. Am. J. Physiol. Renal Physiol. 280(4), F599–F606 (2001)

    Google Scholar 

  • Vink, H., Duling, B.R.: Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79(3), 581–589 (1996)

    Article  Google Scholar 

  • Vonesh, E.F., Rippe, B.: Net fluid absorption under membrane transport models of peritoneal dialysis. Blood Purif. 10(3-4), 209–226 (1992)

    Article  Google Scholar 

  • Waniewski, J., Heimburger, O., Werynski, A., Lindholm, B.: Simple models for fluid transport during peritoneal dialysis. Int. J. Artif. Organs 19(8), 455–466 (1996)

    Google Scholar 

  • Waniewski, J., Stachowska-Pietka, J., Flessner, M.F.: Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. Am. J. Physiol. Heart Circ. Physiol. 296(6), H1960–H1968 (2009)

    Article  Google Scholar 

  • Waniewski, J., Werynski, A., Heimburger, O., Lindholm, B.: Simple membrane models for peritoneal dialysis. Evaluation of diffusive and convective solute transport. ASAIO J. 38(4), 788–796 (1992)

    Google Scholar 

  • Waniewski, J., Werynski, A., Heimburger, O., et al.: Effect of alternative osmotic agents on peritoneal transport. Blood Purif. 11(4), 248–264 (1993)

    Article  Google Scholar 

  • Weinbaum, S., Zhang, X., Han, Y., et al.: Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100(13), 7988–7995 (2003)

    Article  Google Scholar 

  • Wikes, A.D., Howell, S.: Pharmacokinetics of hexamethylmelamine adminiistered via the ip route in and oil emulsion vehicle. Cancer Treat. Rep. 69(6), 657–662 (1985)

    Google Scholar 

  • Yanez-Mo, M., Lara-Pezzi, E., Selgas, R., et al.: Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl. J. Med. 348(5), 403–413 (2003)

    Article  Google Scholar 

  • Yang, B., Folkesson, H.G., Yang, J., et al.: Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am. J. Physiol. 276(1 Pt 1), C76–C81 (1999)

    Google Scholar 

  • Yoffey, J.M., Courtice, F.C.: Lymph flow from regional lymphatics. In: Yoffey, J.M., Courtice, F.C. (eds.) Lymphatics, Lymph, and the Lympho-Myeloid Complex, 1st edn., pp. 295–309. Academic Press, New York (1970)

    Google Scholar 

  • Zakaria, E.R., Lofthouse, J., Flessner, M.F.: Effect of intraperitoneal pressures on tissue water of the abdominal muscle. Am. J. Physiol. Renal Physiol. 278(6), F875–F885 (2000)

    Google Scholar 

  • Zakaria, E.R., Lofthouse, J., Flessner, M.F.: Hydrostatic and osmotic pressures modulate partitioning of tissue water in abdominal muscle during dialysis. Perit. Dial. Int. 19(suppl. 2), S208–S211 (1999a)

    Google Scholar 

  • Zakaria, E.R., Lofthouse, J., Flessner, M.F.: In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am. J. Physiol. 276(2 Pt 2), H517–H529 (1999b)

    Google Scholar 

  • Zakaria, E.R., Lofthouse, J., Flessner, M.F.: In vivo hydraulic conductivity of muscle: effects of hydrostatic pressure. Am. J. Physiol. 273(6 Pt 2), H2774–H2782 (1997)

    Google Scholar 

  • Zhang, X., Adamson, R.H., Curry, F.E., Weinbaum, S.: A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle. Am. J. Physiol. Heart Circ. Physiol. 291(6), H2950–H2964 (2006)

    Article  Google Scholar 

  • Zhu, Q., Carlsson, O., Rippe, B.: Clearance of tracer albumin from peritoneal cavity to plasma at low intraperitoneal volumes and hydrostatic pressures. Perit. Dial. Int. 18(5), 497–504 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Flessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flessner, M.F. (2013). Kinetic Modeling of Peritoneal Dialysis. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics