Skip to main content

Future Directions and New Technology in Peritoneal Dialysis

  • Chapter
Modeling and Control of Dialysis Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 405))

Abstract

Although peritoneal dialysis was first developed in the early 20th century, there are still many challenges that need to be addressed by bioengineers working with nephrologists. The peritoneal dialysis catheter sets up a foreign body reaction in the cavity and often becomes infected; new polymers are needed to minimize the resulting inflammation. New osmotic agents are needed to substitute for glucose that sets up a “diabetic state” in the cavity that leads to peritoneal sclerosis. New technology that can be worn by the mobile patient and that provides continuous dialysis is an exciting development that presents significant challenges to the design engineer. Computational biology attempts to quantitatively integrate the findings in clinical studies, genomics, proteomics, metabolomics to move health care toward “personalized medicine” in order to predict outcomes and to improve care of the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Axelsson, J., Devuyst, O., Nordfors, L., et al.: Place of genotyping and phenotyping in understanding and potentially modifying outcomes in peritoneal dialysis patients. Kidney Int. 103(Suppl.), 138–145 (2006)

    Article  Google Scholar 

  • Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12(1), 56–68 (2011)

    Article  Google Scholar 

  • Bargman, J.M.: Peritoneal dialysis solutions and patient survival: does wishing make it so? Nephrol. Dial. Transplant. 21(10), 2684–2686 (2006)

    Article  Google Scholar 

  • Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009)

    Article  Google Scholar 

  • Booth, A.A., Khalifah, R.G., Todd, P., Hudson, B.G.: In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs): Novel inhibition of post-amadori glycation end products. J. Biol. Chem. 272(9), 5430–5437 (1997)

    Article  Google Scholar 

  • Boudonck, K.J., Mitchell, M.W., Nemet, L., et al.: Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol. Pathol. 37(3), 280–292 (2009a)

    Article  Google Scholar 

  • Boudonck, K.J., Rose, D.J., Karoly, E.D., et al.: Metabolomics for early detection of drug-induced kidney injury: review of the current status. Bioanalysis 1(9), 1645–1663 (2009b)

    Article  Google Scholar 

  • Brewis, I.A., Topley, N.: Proteomics and peritoneal dialysis: early days but clear potential. Nephrol. Dial. Transplant. 25(6), 1749–1753 (2010)

    Article  Google Scholar 

  • Carrero, J.J., Yilmaz, M.I., Lindholm, B., Stenvinkel, P.: Cytokine dysregulation in chronic kidney disease: how can we treat it? Blood Purif. 26(3), 291–299 (2008)

    Article  Google Scholar 

  • Chertow, G.M., Levin, N.W., Beck, G.J., et al.: In-center hemodialysis six times per week versus three times per week. N. Engl. J. Med. 363(24), 2287–2300 (2010)

    Article  Google Scholar 

  • Chuang, H.Y., Hofree, M., Ideker, T.: A decade of systems biology. Annu. Rev. Cell Dev. Biol. 26, 721–744 (2010)

    Article  Google Scholar 

  • Cohen, G., Ilic, D., Raupachova, J., Horl, W.H.: Resistin inhibits essential functions of polymorphonuclear leukocytes. J. Immunol. 181(6), 3761–3768 (2008)

    Google Scholar 

  • Costerton, J.W.: The etiology and persistence of cryptic bacterial infections: a hypothesis. Rev. Infect Dis. 6(suppl. 3), S608–S616 (1984)

    Article  Google Scholar 

  • Crabtree, J.H., Burchette, R.J., Siddiqi, R.A., et al.: The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit. Dial Int. 23(4), 368–374 (2003)

    Google Scholar 

  • Cuccurullo, M., Evangelista, C., Vilasi, A., et al.: Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration. Nephrol. Dial. Transplant. 26(6), 1990–1999 (2011)

    Article  Google Scholar 

  • Dasgupta, M.K., Bettcher, K., Ulan, R.A., Costerton, J.W.: Relationship of adherent bacterial biofilms to peritonitis in chronic ambulatory peritoneal dialysis. Perit. Dial. Bull. 7, 168–173 (1987)

    Google Scholar 

  • Dasgupta, M.K., Costerton, J.W.: Significance of biofilm-adherent bacterial microcolonies on Tenckhoff catheters of CAPD patients. Blood Purif. 7(2-3), 144–155 (1989)

    Article  Google Scholar 

  • Dasgupta, M.K., Ulan, R.A., Bettcher, K., Burns, V., Costerton, J.W.: Effect of exit site infection and peritonitis on the distribution of biofilm encased adherent bacterial microcolonies (BABM) on Tenckhoff (T) catheters in patients undergoing continuous ambulatory peritoneal dialysis. Adv. Perit Dial. 2, 102–109 (1986)

    Google Scholar 

  • Davenport, A., Gura, V., Ronco, C., et al.: A wearable haemodialysis device for patients with end-stage renal failure: a pilot study. Lancet. 370(9604), 2005–2010 (2007)

    Article  Google Scholar 

  • Davies, S.J.: Monitoring of long-term peritoneal membrane function. Perit. Dial. Int. 21(2), 225–230 (2001)

    Google Scholar 

  • Davies, S.J.: Preserving residual renal function in peritoneal dialysis: volume or biocompatibility? Nephrol. Dial. Transplant. 24(9), 2620–2622 (2009)

    Article  Google Scholar 

  • Davies, S.J., Brown, E.A., Frandsen, N.E., et al.: Longitudinal membrane function in functionally anuric patients treated with APD: Data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int. 67(4), 1609–1615 (2005)

    Article  Google Scholar 

  • Davies, S.J., Phillips, L., Naish, P.F., Russell, G.I.: Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal transport. J. Am. Soc. Nephrol. 12(5), 1046–1051 (2001)

    Google Scholar 

  • Dedrick, R.L., Myers, C.E., Bungay, P.M., DeVita Jr., V.T.: Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep. 62(1), 1–11 (1978)

    Google Scholar 

  • Dousdampanis, P., Trigka, K., Chu, M., et al.: Two icodextrin exchanges per day in peritoneal dialysis patients with ultrafiltration failure: one center’s experience and review of the literature. Int. Urol. Nephrol. 43(1), 203–209 (2011)

    Article  Google Scholar 

  • Eleftheriadis, T., Antoniadi, G., Liakopoulos, V., et al.: Disturbances of acquired immunity in hemodialysis patient. Semin. Dial. 20(5), 440–451 (2007)

    Article  Google Scholar 

  • Fan, S.L.: Should we use biocompatible PD solutions for all patients? Perit. Dial. Int. 29(6), 630–633 (2009)

    Google Scholar 

  • Fijen, J.W., Struik, D.G., Krediet, R.T., et al.: Dialysate leucocytosis in CAPD patients without clinical infection. Neth. J. Med. 33(5-6), 270–280 (1988)

    Google Scholar 

  • Flessner, M.F.: Sterile Inflammation and Longevity of the Peritoneal Barrier. Clin. Nephrol. 68(6), 341–348 (2007)

    Google Scholar 

  • Flessner, M.F.: Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach. Am. J. Physiol. Gastrointest Liver Physiol. 281(2), G424–G437 (2001)

    Google Scholar 

  • Flessner, M.F., Credit, K., Henderson, K., et al.: Peritoneal changes after exposure to sterile solutions by catheter. J. Am. Soc. Nephrol. 18(8), 2294–2302 (2007)

    Article  Google Scholar 

  • Flessner, M.F., Credit, K., Richardson, K., et al.: Peritoneal Inflammation after 20-Week Exposure to Dialysis Solution: Effect of Solution versus Catheter-Foreign Body Reaction. Perit. Dial. Int. 30(3), 284–293 (2010)

    Article  Google Scholar 

  • Flessner, M.F., Dedrick, R.L., Schultz, J.S.: A distributed model of peritoneal-plasma transport: theoretical consideratons. Am. J. Physiol. 246(4 Pt. 2), R597–R607 (1984)

    Google Scholar 

  • Freida, P., Issad, B., Dratwa, M., et al.: A combined crystalloid and colloid pd solution as a glucose-sparing strategy for volume control in high-transport apd patients: a prospective multicenter study. Perit. Dial. Int. 29(4), 433–442 (2009)

    Google Scholar 

  • Fung, L.C., Khoury, A.E., Vas, S.I., et al.: Biocompatibility of silver-coated peritoneal dialysis catheter in a porcine model. Perit. Dial. Int. 16(4), 398–405 (1996)

    Google Scholar 

  • Gilbert, J.A., Peers, E.M., Brown, C.B.: IP drug delivery in cancer and aids, using Icodextrin. Perit. Dial. Int. 19(suppl. 1), S78 (1999)

    Google Scholar 

  • Gillerot, G., Goffin, E., Michel, C., et al.: Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int. 67(6), 2477–2487 (2005)

    Article  Google Scholar 

  • Griffiths, W.J., Koal, T., Wang, Y., et al.: Targeted metabolomics for biomarker discovery. Angew Chem. Int. Ed. Engl. 49(32), 5426–5445 (2010)

    Article  Google Scholar 

  • Gura, V., Beizai, M., Ezon, C., Polaschegg, H.D.: Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib. Nephrol. 149, 325–333 (2005)

    Article  Google Scholar 

  • Hauser, A.B., Stinghen, A.E.M., Kato, S., et al.: Characteristics and causes of immune dysfunction related to uremia and dialysis. Perit. Dial. Int. 28(suppl. 3), S183–S187 (2008)

    Google Scholar 

  • Hu, W.J., Eaton, J.W., Ugarova, T.P., Tang, L.: Molecular basis of biomaterial-mediated foreign body reactions. Blood 98(4), 1231–1238 (2001)

    Article  Google Scholar 

  • Jorres, A., Topley, N., Witowski, J., et al.: Impact of peritoneal dialysis solutions on peritoneal immune defense. Perit. Dial. Int. 13(suppl. 2), S291–S294 (1993)

    Google Scholar 

  • Kamath, S., Bhattacharyya, D., Padukudru, C., et al.: Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. A 86(3), 617–626 (2008)

    Google Scholar 

  • Kliger, A.S.: Frequent nocturnal hemodialysis–a step forward? JAMA 298(11), 1331–1333 (2007a)

    Article  Google Scholar 

  • Kliger, A.S.: High-frequency hemodialysis: rationale for randomized clinical trials. Clin. J. Am. Soc. Nephrol. 2(2), 390–392 (2007b)

    Article  Google Scholar 

  • Kohl, P., Crampin, E.J., Quinn, T.A., Noble, D.: Systems biology: an approach. Clin. Pharmacol. Ther. 88, 25–33 (2010)

    Article  Google Scholar 

  • Krediet, R.T., Coester, A.M., Kolesnyk, I., et al.: Karl d. Nolph state of the art lecture: feasible and future options for salvation of the peritoneal membrane. Perit. Dial. Int. 29(suppl. 2), 195–197 (2009)

    Google Scholar 

  • Krediet, R.T., Douma, C.E., Ho-Dac-Pannekeet, M.M., et al.: Impact of different dialysis solutions on solute and water transport. Perit. Dial Int. 17(suppl. 2), S17–S26 (1997)

    Google Scholar 

  • Lechner, M., Kratochwill, K., Lichtenauer, A., et al.: A proteomic view on the role of glucose in peritoneal dialysis. J. Proteome Res. 9(5), 2472–2479 (2010)

    Article  Google Scholar 

  • Lim, W.H., Kireta, S., Leedham, E., et al.: Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 72(9), 1138–1148 (2007)

    Article  Google Scholar 

  • Loscalzo, J., Kohane, I., Barabasi, A.L.: Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol. 3, 124 (2007)

    Article  Google Scholar 

  • Mackenzie, R., Holmes, C.J., Jones, S., et al.: Clinical indices of in vivo biocompatibility: the role of ex vivo cell function studies and effluent markers in peritoneal dialysis patients. Kidney Int. 88(Suppl.), S84–S93 (2003)

    Article  Google Scholar 

  • Matheson, P.J., Mays, C.J., Hurt, R.T., et al.: Modulation of mesenteric lymph flow and composition by direct peritoneal resuscitation from hemorrhagic shock. Arch. Surg. 144(7), 625–634 (2009)

    Article  Google Scholar 

  • McKnight, A.J., Currie, D., Maxwell, A.P.: Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J. Pathol. 220(2), 198–216 (2010)

    Google Scholar 

  • Mizutani, M., Ito, Y., Mizuno, M., et al.: Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal dialysis patients with high peritoneal solute transport rate. Am. J. Physiol. Renal. Physiol. 298(3), F721–F733 (2010)

    Article  Google Scholar 

  • Nishimura, H., Ikehara, O., Naito, T., et al.: Evaluation of taurine as an osmotic agent for peritoneal dialysis solution. Perit. Dial. Int. 29(2), 204–216 (2009)

    Google Scholar 

  • Nissenson, A.R., Ronco, C., Pergamit, G., et al.: Continuously functioning artificial nephron system: the promise of nanotechnology. Hemodial. Int. 9(3), 210–217 (2005a)

    Article  Google Scholar 

  • Nissenson, A.R., Ronco, C., Pergamit, G., et al.: The human nephron filter: toward a continuously functioning, implantable artificial nephron system. Blood Purif. 23(4), 269–274 (2005b)

    Article  Google Scholar 

  • Okazaki, A., Mori, Y., Nakata, M., et al.: Peritoneal mesothelial cells as a target of local aldosterone action: upregulation of connective tissue growth factor expression via serum- and glucocorticoid-inducible protein kinase 1. Kidney Blood Press Res. 32(3), 151–160 (2009)

    Article  Google Scholar 

  • Reed, W.P., Moody, M.R., Newman, K.A., et al.: Bacterial colonization of Hemasite access devices. Surgery 99(3), 308–317 (1986)

    Google Scholar 

  • Rocco, M.V., Larive, B., Eggers, P.W., et al.: Baseline Characteristics of Participants in the Frequent Hemodialysis Network (FHN) Daily and Nocturnal Trials. Am. J. Kidney Dis. 57(1), 90–100 (2011)

    Article  Google Scholar 

  • Ronco, C.: The wearable artificial kidney: is peritoneal dialysis the solution? Contrib. Nephrol. 163, 300–305 (2009)

    Article  Google Scholar 

  • Ronco, C., Chionh, C.Y., Haapio, M., et al.: The cardiorenal syndrome. Blood Purif. 27(1), 114–126 (2009)

    Article  Google Scholar 

  • Ronco, C., Davenport, A., Gura, V.: Toward the wearable artificial kidney. Hemodial Int. 12(suppl. 1), S40–S47 (2008)

    Article  Google Scholar 

  • Ronco, C., Fecondini, L.: The Vicenza wearable artificial kidney for peritoneal dialysis (ViWAK PD). Blood Purif. 25(4), 383–388 (2007)

    Article  Google Scholar 

  • Ryan, D., Robards, K., Prenzler, P.D., Kendall, M.: Recent and potential developments in the analysis of urine: A review. Anal. Chim. Acta. 684(1-2), 8–20 (2011)

    Article  Google Scholar 

  • Schilte, M.N., Celie, J.W., Wee, P.M., et al.: Factors contributing to peritoneal tissue remodeling in peritoneal dialysis. Perit. Dial Int. 29(6), 605–617 (2009a)

    Google Scholar 

  • Schilte, M.N., Loureiro, J., Keuning, E.D., et al.: Long-term intervention with heparins in a rat model of peritoneal dialysis. Perit. Dial Int. 29(1), 26–35 (2009b)

    Google Scholar 

  • Schilte, M.N., Fabbrini, P., Wee, P.M., et al.: Peritoneal dialysis fluid bioincompatibility and new vessel formation promote leukocyte-endothelium interactions in a chronic rat model for peritoneal dialysis. Microcirculation 17(4), 271–280 (2010)

    Article  Google Scholar 

  • Sritippayawan, S., Chiangjong, W., Semangoen, T., et al.: Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes. J. Proteome Res. 6(11), 4356–4362 (2007)

    Article  Google Scholar 

  • Stachowska-Pietka, J., Waniewski, J., Flessner, M.F., Lindholm, B.: A distributed model of bidirectional protein transport during peritoneal fluid absorption. Adv. Perit. Dial. 23, 23–27 (2007)

    Google Scholar 

  • Suri, R.S., Garg, A.X., Chertow, G.M., et al.: Frequent Hemodialysis Network (FHN) randomized trials: study design. Kidney Int. 71(4), 349–359 (2007)

    Article  Google Scholar 

  • Tang, L., Eaton, J.W.: Fibrinogen mediates acute inflammatory responses to biomaterials. J. Exp. Med. 178(6), 2147–2156 (1993)

    Article  Google Scholar 

  • Tang, L., Eaton, J.W.: Inflammatory responses to biomaterials. Am. J. Clin. Pathol. 103(4), 466–471 (1995)

    Google Scholar 

  • Tang, L., Eaton, J.W.: Natural responses to unnatural materials: a molecular mechanism for foreign body reactions. Mol. Med. 5(6), 351–358 (1999)

    Google Scholar 

  • Tjiong, H.L., Swart, R., van den Berg, J.W., Fieren, M.W.: Amino Acid-based peritoneal dialysis solutions for malnutrition: new perspectives. Perit. Dial Int. 29(4), 384–393 (2009)

    Google Scholar 

  • van Westrhenen, R., Zweers, M.M., Kunne, C., et al.: A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution. Perit. Dial Int. 28(5), 487–496 (2008)

    Google Scholar 

  • Walboomers, F., Paquay, Y.C., Jansen, J.A.: A new titanium fiber mesh-cuffed peritoneal dialysis catheter: evaluation and comparison with a Dacron-cuffed tenckhoff catheter in goats. Perit. Dial Int. 21(3), 254–262 (2001)

    Google Scholar 

  • Wang, H.Y., Tian, Y.F., Chien, C.C., et al.: Differential proteomic characterization between normal peritoneal fluid and diabetic peritoneal dialysate. Nephrol. Dial Transplant 25(6), 1955–1963 (2010)

    Article  Google Scholar 

  • Waniewski, J., Stachowska-Pietka, J., Flessner, M.F.: Distributed modeling of osmotically driven fluid transport in peritoneal dialysis: theoretical and computational investigations. Am. J. Physiol. Heart Circ. Physiol. 296(6), H1960–H1968 (2009)

    Article  Google Scholar 

  • Williams, J.D., Craig, K.J., Topley, N., et al.: Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13(2), 470–479 (2002)

    Google Scholar 

  • Yanez-Mo, M., Lara-Pezzi, E., Selgas, R., et al.: Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348(5), 403–413 (2003)

    Article  Google Scholar 

  • Zareie, M., van Lambalgen, A.A., ter Wee, P.M., et al.: Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit. Dial. Int. 25(1), 58–67 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Francis Flessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flessner, M.F. (2013). Future Directions and New Technology in Peritoneal Dialysis. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics