Skip to main content

A Compressive Sensing Scheme of Frequency Sparse Signals for Mobile and Wearable Platforms

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2011 (EUROCAST 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6928))

Included in the following conference series:

  • 2486 Accesses

Abstract

In selected scenarios, sensor data capturing with mobile devices can be separated from the data processing step. In these cases, Compressive Sensing allows a significant reduction of the average sampling rate below the Nyquist rate, if the signal has a sparse frequency representation. This can be motivated in order to increase the energy efficiency of the mobile device and extend its runtime.

Since many signals, especially in the field of motion recognition, are time-dependent, we propose a corresponding general sampling algorithm for time-dependent signals. It even allows a declining average sampling rate if the data acquisition is extended beyond a projected acquisition end.

The presented approach is testified for the purpose of motion recognition by evaluating real acceleration sensor data acquired with the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)

    Article  Google Scholar 

  2. Becker, S., Bobin, J., Candès, E.J.: Nesta: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur, N., Wood, K.: SenseCam: A retrospective memory aid. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Laerhoven, K.V., Aronsen, A.K.: Memorizing what you did last week: Towards detailed actigraphy with a wearable sensor. In: Proceedings of the 27th International Conference on Distributed Computing Systems Workshops. IEEE Computer Society, Washington, DC, USA (2007)

    Google Scholar 

  7. Kranz, M., Spiessl, W., Schmidt, A.: Designing ubiquitous computing systems for sports equipment. In: Proc. Fifth Annual IEEE International Conference on Pervasive Computing and Communications PerCom 2007, pp. 79–86 (2007)

    Google Scholar 

  8. da Costa Ribeiro, S., Kleinsteuber, M., Möller, A., Kranz, M.: Data Acquisition for Motion Recognition on Mobile Platforms via Compressive Sensing. In: Moreno-Díaz, R., et al. (eds.) EUROCAST 2011. LNCS, vol. 6928, pp. 510–517. Springer, Heidelberg (2011)

    Google Scholar 

  9. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. Proceedings of the National Academy of Sciences of the United States of America 100(5), 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory 47(7), 2845–2862 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Candès, E.J., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Problems 23(3), 969–985 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Becker, S., Bobin, J., Candès, E.J.: Nesta: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno-Díaz Franz Pichler Alexis Quesada-Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

da Costa Ribeiro, S., Kleinsteuber, M., Möller, A., Kranz, M. (2012). A Compressive Sensing Scheme of Frequency Sparse Signals for Mobile and Wearable Platforms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27579-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27579-1_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27578-4

  • Online ISBN: 978-3-642-27579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics