Skip to main content

Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and Enumeration

  • Conference paper
SOFSEM 2012: Theory and Practice of Computer Science (SOFSEM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7147))

Abstract

The maximum number of minimal dominating sets that a graph on n vertices can have is known to be at most 1.7159n. This upper bound might not be tight, since no examples of graphs with 1.5705n or more minimal dominating sets are known. For several classes of graphs, we substantially improve the upper bound on the maximum number of minimal dominating sets in graphs on n vertices. In some cases, we provide examples of graphs whose number of minimal dominating sets exactly matches the proved upper bound for that class, thereby showing that these bounds are tight. For all considered graph classes, the upper bound proofs are constructive and can easily be transformed into algorithms enumerating all minimal dominating sets of the input graph.

This work has been supported by the Research Council of Norway (SCOPE 197548/F20) and ANR Blanc AGAPE (ANR-09-BLAN-0159-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  2. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algor. Appl. 7(2), 131–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1) (2008)

    Google Scholar 

  5. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  6. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Proceedings of STACS 2010, pp. 383–394 (2010)

    Google Scholar 

  7. Gaspers, S., Mnich, M.: Feedback Vertex Sets in Tournaments. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 267–277. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Disc. Math. 57 (2004)

    Google Scholar 

  9. Haynes, T.W., Hedetniemi, S.T. (eds.): Domination in graphs. Marcel Dekker Inc., New York (1998)

    MATH  Google Scholar 

  10. Laskar, R.C., Pfaff, J.: Domination and irredundance in split graphs. Technical Report 430, Clemson University (1983)

    Google Scholar 

  11. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dominating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph families. Inform. Proc. Lett. 49(1), 51–56 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawler, E.L.: A note on the complexity of the chromatic number problem. Inform. Proc. Lett. 5(3), 66–67 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Couturier, JF., Heggernes, P., van’t Hof, P., Kratsch, D. (2012). Minimal Dominating Sets in Graph Classes: Combinatorial Bounds and Enumeration. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds) SOFSEM 2012: Theory and Practice of Computer Science. SOFSEM 2012. Lecture Notes in Computer Science, vol 7147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27660-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27660-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27659-0

  • Online ISBN: 978-3-642-27660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics