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Abstract. Length-q substrings, or q-grams, can represent important
characteristics of text data, and determining the frequencies of all q-
grams contained in the data is an important problem with many appli-
cations in the field of data mining and machine learning. In this paper,
we consider the problem of calculating the non-overlapping frequencies

of all q-grams in a text given in compressed form, namely, as a straight
line program (SLP). We show that the problem can be solved in O(q2n)
time and O(qn) space where n is the size of the SLP. This generalizes and
greatly improves previous work (Inenaga & Bannai, 2009) which solved
the problem only for q = 2 in O(n4 log n) time and O(n3) space.

1 Introduction

In many situations, large-scale text data is first compressed for storage, and
then is usually decompressed when it is processed afterwards, where we must
again face the size of the data. To circumvent this problem, algorithms that
work directly on the compressed representation without explicit decompression
have gained attention, especially for the string pattern matching problem [1],
and there has been growing interest in what problems can be efficiently solved
in this kind of setting [14, 17, 7, 16, 8, 6, 4].

The non-overlapping occurrence frequency of a string P in a text string T is
defined as the maximum number of non-overlapping occurrences of P in T [3].
Non-overlapping frequencies are required in several grammar based compres-
sion algorithms [13, 2], as well as ... In this paper, we consider the problem of
computing the non-overlapping occurrence frequencies of all q-grams (length-q
substrings) occurring in a text T , when the text is given as a straight line program
(SLP) [10] of size n. An SLP is a context free grammar in the Chomsky normal
form that derives a single string. SLPs are a widely accepted abstract model
of various text compression schemes, since texts compressed by any grammar-
based compression algorithm (e.g. [18, 13]) can be represented as SLPs, and those
compressed by the LZ-family (e.g. [19, 20]) can be quickly transformed to SLPs.
Theoretically, the length N of the text represented by an SLP of size n can be
as large as O(2n), and therefore a polynomial time algorithm that runs on an
SLP representation is, in the worst case, faster than any algorithm which works
on the uncompressed string.
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For SLP compressed texts, the problem was first considered in [8], where an
algorithm for q = 2 running in O(n4 logn) time and O(n3) space was presented.
However, the algorithm cannot be readily extended to handle q > 2. Intuitively,
the problem for q = 2 is much easier compared to larger values of q, since there
is only one way for a 2-gram to overlap, while there can be many ways that
a longer q-gram can overlap. In this paper we present the first algorithm for
calculating the non-overlapping occurrence frequency of all q-grams, that works
for any q ≥ 2, and runs in O(q2n) time and O(qn) space. Not only do we solve
a more general problem, but the complexity is greatly improved compared to
previous work.

A similar problem for SLPs, where occurrences of q-grams are allowed to
overlap, was also considered in [8], where an O(|Σ|2n2) time and O(n2) space
algorithm was presented for q = 2. A much simpler and efficient O(qn) time
and space algorithm for general q ≥ 2 was recently developed [6]. As is the case
with uncompressed strings, ideas from the algorithms allowing overlapping oc-
currences can be applied somewhat to the problem of obtaining non-overlapping
occurrence frequencies. However, there are still difficulties that arise from the
overlapping of occurrences that must be overcome, i.e., the occurrences of each
q-gram can be obtained in the same way, but we must somehow compute their
non-overlapping occurrence frequency, which is not a trivial task.

For uncompressed texts, the problem considered in this paper can be solved
in O(|T |) time, by applying string indices such as suffix arrays. A similar problem
is the string statistics problem [3], which asks for the non-overlapping occurrence
frequency of a given string P in text string T . The problem can be solved in
O(|P |) time for any P , provided that the text is pre-processed in O(|T | log |T |)
time using the sophisticated algorithm of [5]. However, note that the preprocess-
ing requires only O(|T |) time if occurrences are allowed to overlap. This perhaps
indicates the intrinsic difficulty that arises when considering overlaps.

2 Preliminaries

2.1 Notation

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length
of a string T is denoted by |T |. The empty string ε is a string of length 0,
namely, |ε| = 0. A string of length q > 0 is called a q-gram. The set of q-
grams is denoted by Σq. For a string T = XY Z, X , Y and Z are called a
prefix, substring, and suffix of T , respectively. The i-th character of a string T
is denoted by T [i] for 1 ≤ i ≤ |T |, and the substring of a string T that begins at
position i and ends at position j is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For
convenience, let T [i : j] = ε if j < i. Let TR denote the reversal of T , namely,
TR = T [N ]T [N − 1] · · ·T [1], where N = |T |.

For an integer i and a set of integers A, let i ⊕ A = {i + x | x ∈ A} and
i ⊖ A = {i − x | x ∈ A}. If A = ∅, then let i ⊕ A = i ⊖ A = ∅. Similarly, for a
pair of integers (x, y), let i⊕ (x, y) = (i+ x, i+ y).
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2.2 Occurrences and Frequencies

For any strings T and P , let Occ(T, P ) be the set of occurrences of P in T , i.e.,

Occ(T, P ) = {k > 0 | T [k : k + |P | − 1] = P}.

The number of occurrences of P in T , or the frequency of P in T is, |Occ(T, P )|.
Any two occurrences k1, k2 ∈ Occ(T, P ) with k1 < k2 are said to be overlapping
if k1 + |P | − 1 ≥ k2. Otherwise, they are said to be non-overlapping. The non-
overlapping frequency nOcc(T, P ) of P in T is defined as the size of a largest
subset of Occ(T, P ) where any two occurrences in the set are non-overlapping.
For any strings X,Y , we say that an occurrence i of a string Z in XY , with
|Z| ≥ 2, crosses X and Y , if i ∈ [|X | − |Z|+ 2 : |X |] ∩Occ(XY,Z).

For any strings T and P , we define the sets of right and left priority non-
overlapping occurrences of P in T , respectively, as follows:

RnOcc(T, P ) =

{

∅ if Occ(T, P ) = ∅,
{i} ∪ RnOcc(T [1 : i− 1], P ) otherwise,

LnOcc(T, P ) =

{

∅ if Occ(T, P ) = ∅,
{j} ∪ j+|P |−1⊕LnOcc(T [j + |P | : |T |], P ) otherwise,

where i = maxOcc(T, P ) and j = minOcc(T, P ). For all k ∈ RnOcc(T, P ), it is
trivially said that RnOcc(T [k : |T |], P ) ⊆ RnOcc(T, P ). It can be said to LnOcc
similarly. Note that RnOcc(T, P ) ⊆ Occ(T, P ), LnOcc(T, P ) ⊆ Occ(T, P ), and
LnOcc(T, P ) = |T | − |P |+ 2⊖ RnOcc(TR, PR).

Lemma 1. nOcc(T, P ) = |RnOcc(T, P )| = |LnOcc(T, P )|

Proof. See Appendix.

Lemma 2. For any strings T and P , and any integer i with 1 ≤ i ≤ |T |, let
u1 = maxLnOcc(T [1 : i − 1], P ) + |P | − 1 and u2 = i − 1 + minRnOcc(T [i :
|T |], P ). Then nOcc(T, P ) = |LnOcc(T [1 : u1], P )|+nOcc(T [u1+1 : u2−1], P )+
|RnOcc(T [u2 : |T |], P )|.

Proof. By Lemma 1 and the definitions of u1, u2, LnOcc and RnOcc, we have

nOcc(T, P )

= |LnOcc(T [1 : u1], P )|+ |LnOcc(T [u1 + 1 : |T |], P )|

= |LnOcc(T [1 : u1], P )|+ |RnOcc(T [u1 + 1 : |T |], P )|

= |LnOcc(T [1 : u1], P )|+|RnOcc(T [u1+1 : u2−1], P )|+|RnOcc(T [u2 : |T |], P )|

= |LnOcc(T [1 : u1], P )|+ nOcc(T [u1+1 : u2 − 1], P ) + |RnOcc(T [u2 : |T |], P )|.

⊓⊔

We will later make use of the solution to the following problem, where oc-
currences of q-grams are weighted and allowed to overlap.
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Problem 1 (weighted overlapping q-gram frequencies). Given a string T , an inte-
ger q, and integer array w (|w| = |T |), compute

∑

i∈Occ(T,P ) w[i] for all q-grams

P ∈ Σq where Occ(T, P ) 6= ∅.

Theorem 1 ([6]). Problem 1 can be solved in O(|T |) time.

Proof. See Appendix.

2.3 Straight Line Programs

In this paper, we treat strings described in terms of straight line programs
(SLPs). A straight line program T is a sequence of assignments {X1 = expr1,
X2 = expr2, . . . , Xn = exprn}. EachXi is a variable and each expri is an expres-
sion where expri = a (a ∈ Σ), or expri = XℓXr (ℓ, r < i). We will sometimes
abuse notation and denote T as {Xi}ni=1. Denote by T the string derived from
the last variable Xn of the program T . Fig. 1 shows an example of an SLP. The
size of the program T is the number n of assignments in T .

X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2

X3

X1 X2

X3

X4

X1

X5X4

X6

X1 X2

X3

X1 X2

X3

X4

X1

X5

X7

2 31 4 65 7 8 9 10 11 12 13

Fig. 1. The derivation tree of SLP T =
{X1 = a, X2 = b, X3 = X1X2, X4 =
X1X3, X5 = X3X4, X6 = X4X5, X7 =
X6X5}, which represents string T =
val(X7) = aababaababaab.

Let val (Xi) represent the string
derived from Xi. When it is not con-
fusing, we identify a variable Xi with
val(Xi). Then, |Xi| denotes the length
of the string Xi derives, and Xi[j] =
val(Xi)[j], Xi[j : k] = val(Xi)[j : k]
for 1 ≤ j, k ≤ |Xi|. Let vOcc(Xi) de-
note the number of times a variable
Xi occurs in the derivation of T . For
example, vOcc(X4) = 3 in Fig. 1.

Both |Xi| and vOcc(Xi) can be
computed for all 1 ≤ i ≤ n in a total
of O(n) time by a simple iteration on
the variables: |Xi| = 1 for any Xi =
a (a ∈ Σ), and |Xi| = |Xℓ|+ |Xr| for
any Xi = XℓXr. Also, vOcc(Xn) = 1 and for i < n, vOcc(Xi) =

∑

{vOcc(Xk) |
Xk = XℓXi}+

∑

{vOcc(Xk) | Xk = XiXr}.
We shall assume as in various previous work on SLP, that the word size is

at least log |T |, and hence, values representing lengths and positions of T in our
algorithms can be manipulated in constant time.

3 q-gram Non-Overlapping Frequencies on Compressed

String

The goal of this paper is to efficiently solve the following problem.

Problem 2 (Non-overlapping q-gram frequencies on SLP). Given an SLP T of
size n that describes string T and a positive integer q, compute nOcc(T, P ) for
all q-grams P ∈ Σq.

4



If we decompress the given SLP T obtaining the string T , then we can solve
the problem in O(|T |) time. However, it holds that |T | = O(2n). Hence, in order
to solve the problem efficiently, we have to establish an algorithm that does not
explicitly decompress the given SLP T .

3.1 Key Ideas

For any variable Xi and integer k ≥ 1, let pre(Xi, k) = Xi[1 : min{k, |Xi|}] and
suf (Xi, k) = Xi[|Xi|−min{k, |Xi|}+1 : |Xi|]. That is, pre(Xi, k) and suf (Xi, k)
are the prefix and the suffix of val(Xi) of length k, respectively. For all variables
Xi, pre(Xi, k) can be computed in a total of O(nk) time and space, as follows:

pre(Xi, k) =











val(Xi) if |Xi| ≤ k,

pre(Xℓ, k)pre(Xr, k − |Xℓ|) if Xi = XℓXr and |Xℓ| < k < |Xi|,

pre(Xℓ, k) if Xi = XℓXr and k ≤ |Xℓ|.

suf (Xi, k) can be computed similarly in O(nk) time and space.
For any string T and positive integers q and j (1 ≤ j ≤ j + q − 1 ≤ |T |), the

longest overlapping cover of the q-gram P = T [j : j + q − 1] w.r.t. position j of

T is an ordered pair
←→
locq(T, j) = (b, e) of positions in T which is defined as:

←→
locq(T, j) = argmax

(b,e)














(e − b)

∣

∣

∣

∣

∣

∣

∣

∣

(b, e) ∈ Occ(T, P )× ((q − 1)⊕Occ(T, P )),
b ≤ j ≤ j + q − 1 ≤ e,
∀k ∈ [b : e− q] ∩Occ(T, P ),

[k + 1 : min{k + q − 1, e− q + 1}] ∩Occ(T, P ) 6= ∅















Namely,
←→
locq(T, j) represents the beginning and ending positions of the maximum

chain of overlapping occurrences of q-gram T [j : j+ q− 1] that contains position
j. For example, consider string T = aaabaabaaabaabaaaabaa of length 21. For

q = 5 and j = 9, we have
←→
locq(T, j) = (2, 16), since T [2 : 6] = T [5 : 9] = T [9 :

13] = T [12 : 16] = aabaa. Note that T [17 : 21] = aabaa is not contained in this
chain since it does not overlap with T [12 : 16].

Lemma 3. Given a string T and integers q, j, the longest overlapping cover
←→
locq(T, j) can be computed in O(|T |) time.

Proof. Using, for example, the KMP algorithm [12], we can obtain a sorted list
of Occ(T, T [j : j+ q− 1]) in O(|T |) time. We can just scan this list forwards and
backwards, to easily obtain b and e. ⊓⊔

For a variable Xi = XℓXr and a position 1 ≤ j ≤ |Xi| − q + 1, a longest

overlapping cover (b, e) =
←→
locq(Xi, j) is said to be closed in Xi if q − 1 < b and

e < |Xi| − q + 2.
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Theorem 2. Problem 2 can be solved in O(q2n) time, provided that, for all
variables Xi = XℓXr and j s.t. |Xi| ≥ q and max{1, |Xℓ| − 2(q − 1) + 1} ≤ j ≤

min{|Xℓ| + q − 1, |Xi| − q + 1}, (b, e) =
←→
locq(Xi, j) and nOcc(Xi[b : e], s) are

already computed where s = Xi[j : j + q − 1].

Proof. Algorithm 1 shows a pseudo-code of our algorithm to solve Problem 2.

Consider q-gram s = Xi[j : j+q−1] at position j for which (b, e) =
←→
locq(Xi, j)

is closed in Xi. A key observation is that, if (b, e) is closed in Xi, then (b, e) is
never closed in Xℓ or Xr. Therefore, by summing up vOcc(Xi) ·nOcc(Xi[b : e], s)
for each closed (b, e) inXi, for all such variablesXi, we obtain nOcc(T, s). Line 14
is sufficient to check if (b, e) is closed.

For all 1 ≤ i ≤ n, vOcc(Xi) can be computed in O(n) time, and ti =
pre(Xi, 2(q − 1))suf (Xi, 2(q − 1)) can be computed in O(qn) time and space.
The problem amounts to summing up the values of vOcc(Xi) · nOcc(Xi[b : e], s)
for each q-gram s contained in each ti, and can be reduced to Problem 1 on
string z and integer array w of length O(qn), which can be solved in O(qn) time
by Theorem 1.

In line 15, we check if there is no previous position h (max{1, |Xℓ| − 2(q −

1) + 1} ≤ h < j) such that Xi[h : h+ q − 1] = Xi[j : j + q − 1] by
←→
locq(Xi, h) =

←→
locq(Xi, j), so that we do not count the same q-gram more than once. If there
is no such h, we set the value of wi[k− |Xℓ|+ j] to vOcc(Xi) · nOcc(Xi[b : e], s).
This can be checked in O(q2n) time for all Xi and j.

For convenience, we assume that T = val(Xn) starts and ends with special
characters #q−1 and $q−1 that do not occur anywhere else in T , respectively.
Then we can cope with the last variable Xn as described above. Hence the
theorem holds. ⊓⊔

3.2 Computing Longest Overlapping Covers

In this subsection, we will show how to compute longest overlapping cover (b, e) =
←→
locq(Xi, j) where s = Xi[j : j+q−1] for all Xi and all j required for Theorem 2.

For any string T and integers q and j (1 ≤ j < q), let

−→
locq(T, j) =

{

(j, be) if j + q − 1 ≤ |T |,

(j, |T |) otherwise,

←−
locq(T, j) =

{

(eb, |T | − j + 1) if |T | − j − q + 2 ≥ 1,

(1, |T | − j + 1) otherwise,

where (j, be) = (j − 1) ⊕
←→
locq(T [j : |T |], 1) and (eb, |T | − j + 1) =

←→
locq(T [1 :

|T |−j+1], |T |−j−q+2). Namely,
−→
locq(T, j) is a suffix of the longest overlapping

cover of the q-gram T [j : j + q − 1] that begins at position j (1 ≤ j < q)

in T , and
←−
locq(T, j) is a prefix of the longest overlapping cover of the q-gram

T [|T | − j − q + 2 : |T | − j + 1] that ends at position |T | − j + 1 in T .
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Algorithm 1: Computing q-gram non-overlapping frequencies from SLP

Input: SLP T = {Xi}
n
i=1 representing string T , integer q ≥ 2.

Output: nOcc(T, P ) for all q-grams P ∈ Σq where Occ(T, P ) 6= ∅.
1 Compute vOcc(Xi) for all 1 ≤ i ≤ n;
2 Compute pre(Xi, 2(q − 1)) and suf (Xi, 2(q − 1)) for all 1 ≤ i ≤ n− 1;
3 z ← ε; w← [];
4 for i← 1 to n do

5 if |Xi| ≥ q then

6 let Xi = XℓXr;
7 k ← |suf (Xℓ, 2(q − 1))|;
8 ti = suf (Xℓ, 2(q − 1))pre(Xr, 2(q − 1));
9 z.append(ti);

10 wi ← create integer array of length |ti|, each element set to 0;
11 for j ← max{1, |Xℓ| − 2(q− 1)+ 1} to min{|Xℓ|+ q− 1, |Xi| − q+1} do
12 s← Xi[j : j + q − 1];

13 (b, e)←
←→
locq(Xi, j);

14 if q − 1 < b and e < |Xi| − q + 2 then

15 if
←→
locq(Xi, h) 6=

←→
locq(Xi, j) for any position h s.t.

max{1, |Xℓ| − 2(q − 1) + 1} ≤ h < j then

16 wi[k − |Xℓ|+ j]← vOcc(Xi) · nOcc(Xi[b : e], s);

17 w.append(wi);

18 Calculate q-gram frequencies in z, where each q-gram starting at position d is
weighted by w[d].

Lemma 4. For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q− 1),
−→
locq(Xi, j) can be computed

in a total of O(q2n) time.

Proof. We use dynamic programming. Let Xi = XℓXr, pj = Xi[j : j+q−1], and

assume
−→
locq(Xℓ, j) and

−→
locq(Xr, j) have been calculated for all 1 ≤ j ≤ 2(q− 1).

We examine the string Xi[max{j, |Xℓ| − q + 2} : min{|Xi|, |Xℓ| + q − 1}] for
occurrences of pj that cross Xℓ and Xr, obtain its longest overlapping cover

(bi, ei), and check if it overlaps with
−→
locq(Xℓ, j). Furthermore, let bbr be the left

most occurrence of pj in Xr that has the possibility of overlapping with (bi, ei).

Then,
−→
locq(Xi, j) is either

−→
locq(Xℓ, j), or its end can be extended to ei, or further

to the end of
−→
locq(Xr, bbr), depending on how the covers overlap.

More precisely, let (j, beℓ) =
−→
locq(Xℓ, j), (bi, ei) = max{j − 1, |Xℓ| − q +

1} ⊕
←→
locq(Xi[max{j, |Xℓ| − q + 2} : min{|Xi|, |Xℓ| + q − 1}], h) where h ∈

Occ(Xi[max{j, |Xℓ| − q + 2} : min{|Xi|, |Xℓ| + q − 1}], pj), and (bbr, ber) =

(|Xℓ|+ k− 1)⊕
−→
locq(Xr, k) where k = minOcc(pre(Xr, 2(q− 1)), pj). (Note that

(bbr, ber), (bi, ei) are not defined if occurrences h, k of pj do not exist.) Then we
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have

−→
locq(Xi, j) =











(j, beℓ) if beℓ < bi or 6 ∃h,

(j, ei) if bi ≤ beℓ and (ei < bbr or 6 ∃k)

(j, ber) otherwise.

(See also Fig. 2 in Appendix.) For all variables Xi we pre-compute pre(Xi, 2(q−
1)) and suf (Xi, 2(q− 1)). This can be done in a total of O(qn) time. Then, each
−→
locq(Xi, j) can be computed in O(q) time using the KMP algorithm, Lemma 3,
and the above recursion, giving a total of O(q2n) time for all 1 ≤ i ≤ n and
1 ≤ j ≤ 2(q − 1). ⊓⊔

Lemma 5. For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q− 1),
←−
locq(Xi, j) can be computed

in a total of O(q2n) time.

Proof. The proof is essentially the same as the proof for
−→
locq(Xi, j) in Lemma 4.

Recall that we have assumed in Theorem 2 that
←→
locq(Xi, j) are already com-

puted. The following lemma describes how
←→
locq(Xi, j) can actually be computed

in a total of O(q2n) time.

Lemma 6. For all variable Xi = XℓXr and j s.t. max{1, |Xℓ|− 2(q− 1)+1} ≤

j ≤ min{|Xℓ|+ q−1, |Xi|− q+1}, (b, e) =
←→
locq(Xi, j) can be computed in a total

of O(q2n) time.

Proof. Let sj = Xi[j : j+q−1]. Firstly, we compute (bi, ei) =
←→
locq(Xi[|Xℓ|−2(q−

1)+1 : min{|Xi|, |Xℓ|+2(q−1)}], j) and then
←→
locq(Xi, j) can be computed based

on (bi, ei), as follows: Let (ebℓ, eeℓ) =
←−
locq(Xℓ, |Xℓ| − eeℓ + 1) and (bbr, ber) =

|Xℓ|⊕
−→
locq(Xr, bbr−|Xℓ|), where eeℓ = maxOcc(Xi[max{1, |Xℓ|−2(q−1)+1} :

|Xℓ|], sj) and bbr = minOcc(Xi[|Xℓ|+ 1 : min{|Xi|, |Xℓ|+ 2(q − 1)}], sj).

1. If bi ≤ |Xℓ| and ei > |Xℓ|, then we have b ≤ bi ≤ |Xℓ| < ei ≤ e.

(b, e) =
←→
locq(Xi, j) can be computed by checking whether (ebℓ, eeℓ), (bi, ei),

and (bbr, ber) are overlapping or not. (See also Fig. 3 in Appendix.)
2. If ei ≤ |Xℓ|, then trivially b = ebℓ and e = ei.
3. If bi > |Xℓ|, then trivially b = bi and e = ber.

Each eeℓ = h and bbr = |Xℓ| + k can be computed using the KMP algorithm
on string suf (Xℓ, 2(q − 1))pre(Xr, 2(q − 1)) in O(q) time. By Lemmas 4 and 5,
(ebℓ, eeℓ) and (bbr, ber) can be pre-computed in a total of O(q2n) time for all
1 ≤ i ≤ n. Hence the lemma holds. ⊓⊔

3.3 Largest Left-Priority and Smallest Right-Priority Occurrences

In order to compute nOcc(Xi[b : e], s) for all Xi and all j required for Theorem 2,

where (b, e) =
←→
locq(Xi, j) and s = Xi[j : j + q − 1], we will use the largest
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and second largest occurrences of LnOcc and the smallest and second smallest
occurrences of RnOcc.

For any set S of integers and integer 1 ≤ k ≤ |S|, let maxk S and minkS
denote the k-th largest and the k-th smallest element of S.

For 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q− 1), consider to compute maxk LnOcc(Xi[j :

bei], pj) for k = 1, 2, where (j, bei) =
−→
locq(Xi, j) and pj = Xi[j : j + q − 1].

Intuitively, difficulties in computing maxk LnOcc(Xi[j : bei], pj) come from the
fact that the string val (Xi)[j : bei] can be as long as O(2n), but we only have
prefix pre(Xi, 3(q − 1)) and suffix suf (Xi, 3(q − 1)) of val(Xi) of length O(q).
Hence we cannot compute the value of bei by simply running the KMP algorithm
on those partial strings. For the same reason, the size of LnOcc(Xi[j : bei], pj)
can be as large as O(2n/q). Hence we cannot store LnOcc(Xi[j : bei], pj) as
is. Still, as will be seen in the following lemma, we can compute those values
efficiently, only in O(q2n) time.

Lemma 7. For all variable Xi = XℓXr and 1 ≤ j ≤ 2(q − 1), let (j, bei) =
−→
locq(Xi, j), pj = Xi[j : j + q − 1].

We can compute the values max1 LnOcc(Xi[j : bei], pj) and max2 LnOcc(Xi[j :
bei], pj)

for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

Proof. See Appendix.

The next lemma can be shown similarly to Lemma 7.

Lemma 8. For all variable Xi = XℓXr and 1 ≤ j ≤ 2(q − 1), let (eb, ee) =
←−
locq(Xi, j), and sj = Xi[|Xi|−j−q+2 : |Xi|−j+1]. We can compute the values
min1 RnOcc(Xi[eb : ee], sj) and min2 RnOcc(Xi[eb : ee], sj) for all 1 ≤ i ≤ n
and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

Lemma 9. For all variable Xi = XℓXr and 1 ≤ j < q, maxLnOcc(Xi[ebi :

eei], sj) can be computed in a total of O(q2n) time, where (ebi, eei) =
←−
locq(Xi, j)

and sj = Xi[|Xi| − j − q + 2 : |Xi| − j + 1].

Proof. The lemma can be shown by using Lemma 7. See Appendix for details.

Lemma 10. For all variable Xi = XℓXr and 1 ≤ j < q, minRnOcc(Xi[bbi :

bei], pj) can be computed in a total of O(q2n) time, where (bbi, bei) =
−→
locq(Xi, j)

and pj = Xi[j : j + q − 1].

Proof. The lemma can be shown in a similar way to Lemma 9, using Lemma 8
instead of Lemma 7. ⊓⊔

3.4 Counting Non-Overlapping Occurrences in Longest Overlapping
Covers

Firstly, we show how to count non-overlapping occurrences of q-gram pj in Xi[j :

bei], for all i and j, where pj = Xi[j : j + q − 1] and (j, bei) =
−→
locq(Xi, j).
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Lemma 11. For all variable Xi = XℓXr and 1 ≤ j ≤ 2(q − 1), let (j, bei) =
−→
locq(Xi, j) and pj = Xi[j : j + q − 1]. We can compute nOcc(Xi[j : bei], pj) for
all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

Proof. By Lemma 1, we have nOcc(Xi[j : bei], pj) = |LnOcc(Xi[j : bei], pj)|.
We compute the occurrence bi in (j − 1) ⊕ LnOcc(Xi[j : bei], pj) that crosses
Xℓ and Xr, if such exists. Note that at most one such occurrence exists. Also,
we compute the smallest occurrence bbr in (j − 1)⊕ LnOcc(Xi[j : bei], pj) that
is completely within Xr. Then the desired value nOcc(Xi[j : bei], pj) can be
computed depending whether bi and bbr exist or not.

Formally: Consider the set S = ((j−1)⊕LnOcc(Xi[j : bei], pj))∩[|Xℓ|−q+2 :
|Xℓ|] of occurrence of pj which is either empty or singleton. If S is singleton,
then let bi be its single element. Let bbr = min{k | k ∈ ((j − 1)⊕ LnOcc(Xi[j :
bei], pj)) ∩ [|Xℓ|+ 1 : |Xℓ|+ q − 1], if ∃bi then k ≥ bi + q}.

Then we have

nOcc(Xi[j : bei], pj)

=































nOcc(Xr[j − |Xℓ| : bei − |Xℓ|], pj) if j > |Xℓ|,

nOcc(Xℓ[j : beℓ], pj) if 6 ∃bi and 6 ∃bbr,

nOcc(Xℓ[j : beℓ], pj) + 1 if ∃bi and 6 ∃bbr

nOcc(Xℓ[j : beℓ], pj) + nOcc(Xr[br : ber], pj) if 6 ∃bi and ∃bbr,

nOcc(Xℓ[j : beℓ], pj) + nOcc(Xr[br : ber], pj) + 1 if ∃bi and ∃bbr,

where (bbr, ber) =
−→
locq(Xr, bbr).

For all variables Xi we pre-compute pre(Xi, 3(q − 1)) and suf (Xi, 3(q − 1)).
This can be done in a total of O(qn) time. If bi or bbr exists, |Xℓ| − 3(q − 1) <
j − 1 + maxLnOcc(Xℓ[j : beℓ], j) ≤ |Xℓ| − q + 2. Then, each bi and bbr can be
computed from LnOcc(Xi[(j−1+maxLnOcc(Xℓ[j : beℓ], j)) : |Xℓ|+3(q−1)], pj)
running the KMP algorithm on string suf (Xℓ, 3(q− 1))pre(Xr, 3(q− 1)). Based
on the above recursion, we can compute nOcc(Xi[j : bei], pj) in a total of O(q2n)
time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1). ⊓⊔

The next lemma can be shown similarly to Lemma 11.

Lemma 12. For all variable Xi = XℓXr and 1 ≤ j ≤ 2(q − 1), let (ebi, eei) =
←−
locq(Xi, j) and sj = Xi[|Xi| − j − q + 2 : |Xi| − j + 1]. We can compute
nOcc(Xi[ebi : eei], sj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of
O(q2n) time.

We have also assumed in Theorem 2 that nOcc(Xi[b : e], sj) are already
computed. This can be computed efficiently, as follows:

Lemma 13. For all variable Xi = XℓXr and j s.t. min{1, |Xℓ|−2(q−1)+1} ≤
j ≤ min{|Xi|− q+1, |Xℓ|+ q− 1}, nOcc(Xi[b : e], sj) can be computed in a total

of O(q2n) time, where (b, e) =
←→
locq(Xi, j) and sj = Xi[j : j + q − 1].
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Proof. We consider the case where max{1, |Xℓ|− q+2} ≤ j ≤ |Xℓ|, as the other
cases can be shown similarly. Our basic strategy for computing nOcc(Xi[b : e], sj)
is as follows. Firstly we compute the largest element of LnOcc(Xi[b : e], sj)
that occurs completely within Xℓ. Secondly we compute the smallest element of
RnOcc(Xi[b : e], sj) that occurs completely within Xr. Thirdly we compute an
occurrence of sj that crosses the boundary of Xℓ and Xr, and do not overlap
the above occurrences of sj completely within Xℓ and Xr.

Formally: Let eeℓ = b + q − 2 + maxOcc(Xi[b : |Xℓ|], sj), bbr = |Xℓ| +
minOcc(Xi[|Xℓ| + 1 : e], sj), u1 = b + q − 2 + maxLnOcc(Xi[b : eeℓ], sj), and
u2 = bbr − 1 + minRnOcc(Xi[bbr : e], sj). We consider the case where all these
values exist, as other cases can be shown similarly. It follows from Lemmas 1
and 2 that

nOcc(Xi[b : e], sj)

= |LnOcc(Xi[b : u1], sj)|+nOcc(Xi[u1+1 : u2−1], sj)+|RnOcc(Xi[u2 : e], sj)|

= nOcc(Xi[b : eeℓ], sj) + nOcc(Xi[u1 + 1 : u2 − 1], sj) + nOcc(Xi[bbr : e], sj),

(See also Fig. 6 in Appendix.)

By Lemma 6, (b, e) =
←→
locq(Xi, j) can be pre-computed in a total of O(q2n)

time. Since b < eeℓ and bbr < e, eeℓ and bbr can be computed in O(q) time
using the KMP algorithm. By Lemmas 11 and 12 nOcc(Xi[b : eeℓ], sj) and
nOcc(Xi[bbr : e], sj) can be pre-computed in a total of O(q2n) time (Notice

(b, eeℓ) =
←−
locq(Xℓ, eeℓ) and (bbr, e) = |Xℓ| ⊕

−→
locq(Xr, bbr − |Xℓ|)). By Lem-

mas 9 and 10, u1 and u2 can be pre-computed in a total of O(q2n) time. Hence
nOcc(Xi[u1 + 1 : u2 − 1], sj) can be computed in O(q) time using the KMP
algorithm for each i and j. The lemma thus holds. ⊓⊔

3.5 Main Result

The following theorem concludes this whole section.

Theorem 3. Problem 2 can be solved in O(q2n) time and O(qn) space.

Proof. The time complexity and correctness follow from Theorem 2, Lemma 6,
and Lemma 13.

We compute and store strings suf (Xi, 3(q − 1)) and pre(Xi, 3(q − 1)) of
length O(q) for each variable Xi, hence this requires a total of O(qn) space for
all 1 ≤ i ≤ n. We use a constant number of dynamic programming tables each
of which is of size O(qn). Hence the total space complexity is O(qn). ⊓⊔

4 Conclusion and Discussion

We considered the problem of computing the non-overlapping frequencies for
all q-grams that occur in a given text represented as an SLP. Our algorithm
greatly improves previous work which solved the problem only for q = 2 requiring
O(n4 logn) time and O(n3) space. We give the first algorithm which works for
any q ≥ 2, running in O(q2n) time and O(qn) space, where n is the size of the
SLP.
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Appendix

A Proofs

Proof of Theorem 1.

Proof. We will make use of the suffix array and lcp array.
The suffix array [15] SA of any string T is an array of length |T | such that

SA[i] = j, where T [j : |T |] is the i-th lexicographically smallest suffix of T .
The lcp array of any string T is an array of length |T | such that LCP [i] is the
length of the longest common prefix of T [SA[i − 1] : |T |] and T [SA[i] : |T |] for
2 ≤ i ≤ |T |, and LCP [1] = 0.

It is well known that the suffix array for any string of length |T | can be
constructed in O(|T |) time (e.g. [9]) assuming an integer alphabet. Given the
text and suffix array, the lcp array can also be calculated in O(|T |) time [11].

We can calculate the overlapping q-gram frequencies of string T using suffix
array SA and lcp array LCP. SA[i] represents an occurrence of a q-gram T [SA[i] :
SA[i] + q − 1]. Since the suffixes are lexicographically sorted in the suffix array,
intervals on the suffix array where the values of lcp array are at least q represent
occurrence of the same q-gram. The sum of w[SA[i]] in this interval is the desired
value for the q-gram. Constructing SA, LCP can be done in O(|T |) time, and
summing up w[SA[i]] for each interval where LCP [i] ≥ q can easily be done in
O(|T |) by a simple scan. ⊓⊔

Proof of Lemma 1.

Proof. We prove nOcc(T [1 : i], P ) = |LnOcc(T [1 : i], P )| by induction on i. For
i ≤ 1, the statement clearly holds. Now, assume that the statement holds for
i < k, where k ≥ 2. For i = k, notice that 0 ≤ nOcc(T [1 : k], P )− |LnOcc(T [1 :
k], P ) ≤ 1, since there can be at most one new occurrence of P ending at
position i, which may or may not be counted for nOcc(T [1 : k], P ). If we assume
on the contrary that the statement does not hold for i = k, then nOcc(T [1 :
k], P ) − nOcc(T [1 : k − 1], P ) = nOcc(T [1 : k], P ) − |LnOcc(T [1 : k], P )| = 1.
Since the change was caused by the new occurrence, we have nOcc(T [1 : k]) =
nOcc(T [1 : k − |P |]) + 1. By the inductive hypothesis, we have nOcc(T [1 : k −
|P |], P ) = |LnOcc(T [1 : k − |P |], P )|. Also, |LnOcc(T [1 : k], P )| = |LnOcc(T [1 :
k−|P |], P )|+1, since the new occurrence does not overlap with any occurrences
in LnOcc(T [1 : k − |P |]). This leads to nOcc(T [1 : k]) = |LnOcc(T [1 : k], P )|, a
contradiction. nOcc(T, P ) = |RnOcc(T, P )| can be shown symmetrically. ⊓⊔

Proof of Lemma 7.

Proof. We compute the smallest occurrence bi in (j− 1)⊕LnOcc(Xi[j : bei], pj)
that crosses Xℓ and Xr. Also, we compute the smallest occurrence bbr in (j −
1)⊕ LnOcc(Xi[j : bei], pj) that is completely within Xr.
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Then the desired value max1 LnOcc(Xi[j : bei], pj) can be computed depend-
ing whether bi and bbr exist or not.

Formally, consider the set S = ((j−1)⊕LnOcc(Xi[j : bei], pj))∩[|Xℓ|−q+2 :
|Xℓ|] of occurrence of pj which is either empty or singleton. If S is singleton,
then let bi be its single element. Let bbr = min{k | k ∈ ((j − 1)⊕ LnOcc(Xi[j :
bei], pj)) ∩ [|Xℓ|+ 1 : |Xℓ|+ 2(q − 1)], if ∃bi then k ≥ bi + q}.

Then we have

max1LnOcc(Xi[j : bei], pj)

=











max1 LnOcc(Xℓ[j : beℓ], pj) if 6 ∃bi and 6 ∃bbr

bi − j + 1 if ∃bi and 6 ∃bbr

bbr − j +max1 LnOcc(Xr[bbr − |Xℓ| : ber], pj) if ∃bbr

(See also Fig. 7 in Appendix B.)
For all variables Xi we pre-compute pre(Xi, 3(q − 1)) and suf (Xi, 3(q − 1)).

This can be done in a total of O(qn) time. If bi or bbr exists, |Xℓ| − 3(q − 1) ≤
j − 1 + maxLnOcc(Xℓ[j : beℓ], j) ≤ |Xℓ| − q + 1. Then, each bi and bbr can be
computed from LnOcc(Xi[(j−1+maxLnOcc(Xℓ[j : beℓ], j)) : |Xℓ|+3(q−1)], pj)
runnning the KMP algorithm on string pre(Xi, 3(q − 1))suf (Xi, 3(q − 1)).

Based on the above recursion, we can compute max1 LnOcc(Xi[j : bei], pj)
in a total of O(q2n) time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1).

It is not difficult to see that similar claims, with slightly different conditions,
can be made for max2 LnOcc(Xi[j : bei], pj) where the value corresponds to
one of 4 values: max2 LnOcc(Xℓ[j : beℓ], pj), max1 LnOcc(Xℓ[j : beℓ], pj), bi, or
max2 LnOcc(Xr[bbr − |Xℓ| : ber], pj), with appropriate offsets. ⊓⊔

Proof of Lemma 9.

Proof. Our basic strategy for computing maxLnOcc(Xi[ebi : eei], sj) is as fol-
lows. Firstly we compute the largest element of LnOcc(Xi[ebi : eei], sj) that
occurs completely within Xℓ. Secondly we compute the smallest element of
LnOcc(Xi[ebi : eei], sj) that crosses the boundary of Xℓ and Xr. Let d be this
occurrence, if such exists. Then the desired output maxLnOcc(Xi[ebi : eei], sj)
is given as either the largest or the second largest element of (d + q − 1) ⊕
LnOcc(Xr[d+ q − |Xℓ| : |Xr|], sj).

More formally: We consider the case where ebi + q − 1 ≤ |Xℓ|. Let eeℓ =
q − 1 + max(Occ(Xi, sj) ∩ [|Xℓ| − 2(q − 1) + 1 : |Xℓ| − q + 1]), m = ebi −

1 + maxLnOcc(Xℓ[ebi : eeℓ], sj) where (ebi, eeℓ) =
←−
locq(Xℓ, |Xℓ| − eeℓ + 1). Let

d = m+ q − 1 + minLnOcc(Xi[m+ q : eei], sj). Let

bbr =

{

d if eei−q+1≤|Xℓ| or d> |Xℓ|,

d+q−1+minLnOcc(Xi[d+q : |Xi|], sj) otherwise.

Let h′ = |Xℓ|+max2 LnOcc(Xr[bbr′ : ber′ ], sj) and h = |Xℓ|+max1 LnOcc(Xr[bbr′ :

ber′ ], sj) where (bbr′ , ber′) =
−→
locq(Xr, bbr−|Xℓ|). (See also Fig. 5 in Appendix B.)
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Then

maxLnOcc(Xi[ebi : eei], sj) =

{

h if h ≤ eei − q + 1,

h′ otherwise.

The case where ebi + q − 1 > |Xℓ| can be solved similarly.
Each eeℓ, d and bbr can be computed in O(q) time using the KMP algorithm,

hence requiring a total of O(q2n) time. By Lemmas 4 and 5,
←−
locq(Xℓ, eeℓ) and

−→
locq(Xi, bbr) can be computed in O(q2n) time for all Xi = XℓXr and 1 ≤ j < n.
By Lemma 7, h′ and h can be computed in a total of O(q2n) time for all Xi =
XℓXr and 1 ≤ j < n. Therefore, by dynamic programming we can compute
LnOcc(Xi[ebi : eei], sj) in a total of O(q2n) time. ⊓⊔
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Fig. 2. Illustration for Lemma 4. In this figure,
−→
locq(Xi, j) = (j, ei).
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Fig. 3. Illustration for Lemma 6. Rectangles show important occurrences of Xi[j :
j + q − 1]. In this case b = ebℓ and e = ber.
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Fig. 4. Illustration for Lemma 7, calculating maxLnOcc(Xi[j : be], pj). Shadowed oc-
currences are not in LnOcc(Xi[j : bei], pj), while white ones are in LnOcc(Xi[j :
bei], pj).
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Fig. 5. Illustration for Lemma 9. Rectangles show important occurrences of sj . In this
case maxLnOcc(Xi[ebi, eei], sj) = h′, as h > eei − q + 1.
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Fig. 6. Illustration for Lemma 13. Rectangles show important occurrences of Xi[j :
j + q − 1]. In this case nOcc(Xi[b : eeℓ], sj) = 3, nOcc(Xi[u1 + 1 : u2 − 1], sj) = 1, and
nOcc(Xi[bbr : e], sj) = 3.
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