Abstract
We developed an ontology that allows representation and reasoning with effects of clinical actions. The ontology can support three important use-cases: (1) summarization and explanation of observed clinical states, (2) enhancing patient safety using safety rules, and (3) assessing guideline compliance. In this paper we focus on explanation of observed clinical states based on abductive reasoning that utilizes a causal network. We demonstrate our approach using examples taken from a guideline for management of amyloidosis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Peleg, M., Kantor, R.: Approaches for guideline versioning using GLIF. In: Proc. AMIA Symp. 2003, pp. 509–513 (2003)
Societa Italiana per l’Amiloidosi. Terapia dell’Amiloidosi AL sistemica- Linee guida (2009), www.amiloidosi.it
Sipe, J.D., Benson, M.D., Buxbaum, J.N., Ikeda, S., Merlini, G., Saraiva, M.J., et al.: Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 17(3-4), 101–104 (2010)
Westermark, P., Benson, M.D., Buxbaum, J.N., Cohen, A.S., Frangione, B., Ikeda, S., et al.: A primer of amyloid nomenclature. Amyloid 14(3), 179–183 (2007)
Palladini, G., Merlini, G.: Current treatment of AL amyloidosis. Haematologica 94(8), 1044–1048 (2009)
Knublauch, H., Horridge, M., Rector, A.L., Stevens, R., Drummond, N., Lord, P., et al.: The Protege OWL Experience: workshop on OWL: Experiences and Directions. In: Fourth International Semantic Web Conference, Galway, Ireland (2005)
Soffer, P., Wand, Y.: Goal-driven Analysis of Process Model Validity. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 521–535. Springer, Heidelberg (2004)
Gertz, M.A., Comenzo, R., Falk, R.H, Fermand, J.P., Hazenberg, B.P., Hawkins, P.N., et al.: Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, April 18-22 (2004); Am. J. Hematol. 79(4), 319–328 (2005)
Ferrari, R., Caffi, E., Rubrichi, S., Quaglini, S., Stefanelli, M., Russo, P., Palladini, G., Lavatelli, F., Merlini, G.: AMIloidosi CArtella (AMICA): an electronic patient record specifically designed for an amyloidosis network. Amyloid 17(1), 88 (2010)
Fankam, C., Jean, S., Pierra, G., Bellatreche, L., Ait-ameur, Y.: Towards Connecting Database Applications to Ontologies. In: Intl. Conf. on Advances in Databases, Knowledge, and Data Applications, pp. 131–137 (2009)
Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description Logics. Logic J. of IGPL 8(3), 239–263 (2000)
Clancey, W.J.: From Guidon to Neomycin and Heracles in Twenty Short Lessons: ORN Final Report 1979-1985. AI Magazine 7(3), 40–60 (1986)
Chandrasekaran, B., Swartout, W.: Explanations in Knowledge Systems: the Role of Explicit Representation of Design Knowledge. IEEE Intelligent Systems 6(3), 47–49 (1991)
Patil, R.S.: Causal Representation of Patient Illness for Electrolyte and Acid-Base Diagnosis. MIT, Cambridge (1981)
Pople, H.E.: Heuristic Methods for Imposing Structure on Ill-Structured Problems: The Structuring of Medical Diagnostics. In: Szolovits, P. (ed.) Artificial Intelligence in Medicine. Westview Press, Boulder (1982)
Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving, Technical Note 43r. Stanford Research Institute, Menlo Park (1971)
Fox, J., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma approach. Artificial Intelligence in Medicine 14, 157–181 (1998)
Shahar, Y., Miksch, S., Johnson, P.: An Intention-Based Language for Representing Clinical Guidelines. In: Cimino, J.J. (ed.) AMIA Annual Fall Symposium, pp. 592–596. Hanley & Belfus, Washington, D.C (1996)
Grando, A.M., Peleg, M., Glasspool, D.: A goal-oriented framework for specifying clinical guidelines and handling medical errors. J. of Biomedical Informatics 1(2), 287–299 (2010)
Advani, A., Lo, K., Shahar, Y.: Intention-Based Critiquing of Guideline-Oriented Medical Care. In: Proc. AMIA Annual Symposium, pp. 483–487 (1998)
Groot, P., Hommersom, A., Lucas, P.J., Merk, R.J., ten Teije, A., van Harmelen, F., et al.: Using model checking for critiquing based on clinical guidelines. Artif. Intell. Med. 46(1), 19–36 (2009)
Rubin, D.I., Gennari, J., Musen, M.A.: Knowledge representation and tool support for critiquing clinical trial protocols. In: Proc. AMIA Symp., pp. 724–728 (2000)
Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M., Eriksson, H., et al.: The Evolution of Protege: An Environment for Knowledge-Based Systems Development. International Journal of Human-Computer Interaction 58(1), 89–123 (2002)
Hammond, P., Modgil, S., Wyatt, J.C.: Safety and computer-aided design of chemotherapy plans. Top Health Inf. Manage 20(4), 55–66 (2000)
Pérez-Urbina, H., Horrocks, I., Motik, B.: Efficient Query Answering for OWL 2. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 489–504. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peleg, M. et al. (2012). Reasoning with Effects of Clinical Guideline Actions Using OWL: AL Amyloidosis as a Case Study. In: Riaño, D., ten Teije, A., Miksch, S. (eds) Knowledge Representation for Health-Care. KR4HC 2011. Lecture Notes in Computer Science(), vol 6924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27697-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-27697-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27696-5
Online ISBN: 978-3-642-27697-2
eBook Packages: Computer ScienceComputer Science (R0)