Skip to main content

Analysis of Treatment Compliance of Patients with Diabetes

  • Conference paper
Knowledge Representation for Health-Care (KR4HC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6924))

Included in the following conference series:

  • 603 Accesses

Abstract

The prevalence of diabetes is increasing worldwide. Despite the advances in evidence based therapies, patients with diabetes continue to encounter ongoing morbidity and diminished health-related quality of life. One of the reasons for the diminished benefit from therapy is medication noncompliance. Considerable evidence shows that a combination of therapeutic lifestyle changes (increased exercise and diet modification) and drug treatment can control and, if detected early enough, even prevent the development of diabetes and its harmful effects on health. However, despite the fact that type-2 diabetes is treatable and reversible with appropriate management, patients frequently do not comply with treatment recommendations. In this paper, we use a combination of Expectation Maximization (EM) clustering and Artificial Neural Network (ANN) modeling to determine factors influencing compliance rates, as measured in terms of medication possession ratio (MPR), among patients prescribed fixed dose combination therapy for type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wild, S., Roglic, G., Green, A., Sicre, R., King, H.: Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030. Diabetes Care 27, 1047–1053 (2004)

    Article  Google Scholar 

  2. Centres for Disease Control and Prevention: National Diabetes Fact Sheet: National Estimates and General Information on Diabetes and Prediabetes in the United States, 2011. U.S. Department of Health and Human Services, Atlanta (2011)

    Google Scholar 

  3. Conn, V.S., Hafdahl, A.R., Cooper, P.S., Ruppar, T.M., Mehr, D.R., Russell, C.L.: Interventions to Improve Medication Adherence among Older Adults: Meta-analysis of Adherence Outcomes among Randomized Controlled Trials. Gerontologist 49, 447–462 (2009)

    Article  Google Scholar 

  4. Funnell, M.M., Anderson, R.M.: The Problem with Compliance in Diabetes. JAMA 284, 1709 (2000)

    Article  Google Scholar 

  5. Cramer, J.A.: A Systematic Review of Adherence with Medications for Diabetes. Diabetes Care 27, 1218–1224 (2004)

    Article  Google Scholar 

  6. Minet, L., Moller, S., Vach, W., Wagner, L., Henriksen, J.E.: Mediating the Effect of Self-Care Management Intervention in Type 2 Diabetes: A Meta-Analysis of 47 Randomised Controlled Trials. Patient Educ. Couns. 80, 29–41 (2010)

    Article  Google Scholar 

  7. Scott, I.A., Denaro, C.P., Bennett, C.J., Hickey, A.C., Mudge, A.M., Flores, J.L., Sanders, D.C., Thiele, J.M., Wenck, B., Bennett, J.W., Jones, M.A.: Achieving Better in-Hospital and After-Hospital Care of Patients with Acute Cardiac Disease. Med. J. Aust. 180, 83–88 (2004)

    Google Scholar 

  8. Ralston, J.D., Revere, D., Robins, L.S., Goldberg, H.I.: Patients’ Experience with a Diabetes Support Programme Based on an Interactive Electronic Medical Record: Qualitative Study. BMJ 328, 1126–1159 (2004)

    Article  Google Scholar 

  9. Asche, C., LaFleur, J., Conner, C.: A Review of Diabetes Treatment Adherence and the Association with Clinical and Economic Outcomes. Clin. Ther. 33, 74–109 (2011)

    Article  Google Scholar 

  10. Fukunaga, L.L., Uehara, D.L., Tom, T.: Perceptions of Diabetes, Barriers to Disease Management, and Service Needs: A Focus Group Study of Working Adults with Diabetes in Hawaii. Prev. Chronic Dis. 8, 1–8 (2011)

    Google Scholar 

  11. Swift, E.E., Chen, R., Herschberger, A., Homes, C.S.: Demographic Risk Factors, Mediators, and Moderators in Youths’ Diabetes Metabolic Control. Ann. Behav. Med. 32, 39–49 (2006)

    Article  Google Scholar 

  12. Leslie, R.S., Gwadry-Sridhar, F., Thiebaud, P., Patel, B.V.: Calculating Medication Compliance, Adherence and Persistence in Administrative Pharmacy Claims Databases. Pharma. Prog., 13–19 (2008)

    Google Scholar 

  13. Steiner, J.F., Prochazka, A.V.: The Assessment of Refill Compliance using Pharmacy Records: Methods, Validation, and Applications. J. Clin. Epidemiol. 50, 105–106 (1997)

    Article  Google Scholar 

  14. Glidden, D.V., Vittinghoff, E.: Modelling Clustered Survival Data from Multicentre Clinical Trials. Stat. Med. 23, 369–888 (2004)

    Article  Google Scholar 

  15. Patil, S.B., Kumaraswamy, Y.S.: Extraction of Significant Patterns from Heart Disease Warehouses for Heart Attack Prediction. IJCSNS 9, 228–235 (2009)

    Google Scholar 

  16. Hamou, A., Bauer, M., Lewden, B., Simmons, A., Zhang, Y., Wahlund, L.O., Tunnard, C., Kloszewska, I., Mecozzi, P., Soininen, H., et al.: Cluster Analysis and Decision Trees of MR Imaging in Patients Suffering. In: Demazeau, Y., et al. (eds.) Trends in PAAMS 2010. AISC, vol. 5, pp. 477–484. Springer, Heidelberg (2010)

    Google Scholar 

  17. Gwadry-Sridhar, F., Bauer, M., Lewden, B., Hamou, A.: A Markov Analysis of Patients Developing Sepsis using Clusters. In: Riaño, D., ten Teije, A., Miksch, S., Peleg, M. (eds.) KR4HC 2010. LNCS, vol. 6512, pp. 85–100. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Bougenière, G., Cariou, C., Chehdi, K., Gay, A.: Non Parametric Stochastic Expectation Maximization for Data Clustering. In: Filipe, J., Obaidat, M.S. (eds.) ICETE 2007. CCIS, vol. 23, pp. 293–303 (2009)

    Google Scholar 

  20. Geisser, S.: Predictive Inference. Chapman and Hall, New York (1993)

    Book  MATH  Google Scholar 

  21. Anderson, J.A.: Introduction to Neural Networks. Prentice-Hall, New Delhi (2001)

    Google Scholar 

  22. Penny, W., Frost, D.: Neural Networks in Clinical Medicine. Med. Decis. Making 16, 386–398 (1996)

    Article  Google Scholar 

  23. Basheer, I.A., Hajmeer, M.: Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J. Microbiol. Methods 43, 3–31 (2000)

    Article  Google Scholar 

  24. Maglaveras, N., Stamkopoulos, T., Diamantaras, K., Pappas, C., Strintzis, M.: ECG Pattern Recognition and Classification using Nonlinear Transformations and Neural Networks: A Review. Int. J. Med. Inform. 52, 191–208 (1998)

    Article  Google Scholar 

  25. The Waikato Environment for Knowledge Analysis, http://www.cs.waikato.ac.nz/ml/weka/

  26. Jain, A., Zongker, D.: Feature Selection: Evaluation, Application and Small Sample Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 153–158 (1997)

    Article  Google Scholar 

  27. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression, 2nd edn. Wiley- Interscience, New York (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bahati, R., Guy, S., Gwadry-Sridhar, F. (2012). Analysis of Treatment Compliance of Patients with Diabetes. In: Riaño, D., ten Teije, A., Miksch, S. (eds) Knowledge Representation for Health-Care. KR4HC 2011. Lecture Notes in Computer Science(), vol 6924. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27697-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27697-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27696-5

  • Online ISBN: 978-3-642-27697-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics