Skip to main content

A Computational Indistinguishability Logic for the Bounded Storage Model

  • Conference paper
Foundations and Practice of Security (FPS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6888))

Included in the following conference series:

Abstract

Side-channel attacks are a major threat for cryptographic mechanisms; yet, they are not considered in the computational model that is used by cryptographers for proving the security of their schemes. As a result, there are several efficient attacks against standardized implementations of provably secure schemes. Leakage resilient cryptography aims to extend provable security so that it can account for side-channels. There are several models of leakage resilient cryptography, from very general models such as physically observable cryptography, to more specialized models that aim to account for a specific form of covert channel. The Bounded Storage model (BSM) is a such a specialized model, which focuses on situations where a virus or a malware program forwards to the attacker some information stolen from the infected computer’s memory, for instance some share of a long-term key.

We adapt the Computational Indistinguishability Logic to account the BSM, and show how the resulting formalism can be used to verify an existing key exchange protocol in the BSM. Our work provides the first formalism to reason about leakage resilient cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwen, J., Dodis, Y., Wichs, D.: Survey: Leakage Resilience and the Bounded Retrieval Model. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y.: Computational indistinguishability logic. In: Proceedings of the 17th ACM Conference on Computer and Communications Security. ACM (2010)

    Google Scholar 

  3. Barthes, G., Duclos, M., Lakhnech, Y.: A computational indistinguishability logic for the bounded storage model. Technical report, Verimag, IMDEA Software (2011)

    Google Scholar 

  4. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: Proceedings of POPL 2009, pp. 90–101 (2009)

    Google Scholar 

  5. Blanchet, B.: A computationally sound mechanized prover for security protocols. In: IEEE Symposium on Security and Privacy, pp. 140–154 (2006)

    Google Scholar 

  6. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Cortier, V., Kremer, S., Warinschi, B.: A survey of symbolic methods in computational analysis of cryptographic systems. J. Autom. Reasoning, 1–35 (2010)

    Google Scholar 

  9. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound compositional logic for key exchange protocols. In: Proceedings of CSFW 2006, pp. 321–334 (2006)

    Google Scholar 

  10. Dziembowski, S., Maurer, U.: Optimal randomizer efficiency in the bounded-storage model. Journal of Cryptology 17(1), 5–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 293–302 (2008)

    Google Scholar 

  12. Dziembowski, S.: Intrusion-Resilience Via the Bounded-Storage Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Goldwasser, S., Micali, S.: Probabilistic encryption* 1. Journal of Computer and System Sciences 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic constructions. Journal of Computer and Systems Sciences 72(2), 286–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  16. Kiltz, E., Pietrzak, K.: Leakage Resilient ElGamal Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology 5(1), 53–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Rogaway, P., Bellare, M.: Optimal asymmetric encryption how to encrypt with rsa (1995)

    Google Scholar 

  21. Zhang, Y.: The computational SLR: a logic for reasoning about computational indistinguishability. IACR ePrint Archive 2008/434 (2008); Also in Proc. of Typed Lambda Calculi and Applications 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthe, G., Duclos, M., Lakhnech, Y. (2012). A Computational Indistinguishability Logic for the Bounded Storage Model. In: Garcia-Alfaro, J., Lafourcade, P. (eds) Foundations and Practice of Security. FPS 2011. Lecture Notes in Computer Science, vol 6888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27901-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27901-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27900-3

  • Online ISBN: 978-3-642-27901-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics