Analyzing Characteristic Host Access Patterns for Re-Identification of Web User Sessions

Dominik Herrmann, <u>Christoph Gerber</u>, Christian Banse, Hannes Federrath

Management of Information Security University of Regensburg, Germany

Nordsec 27. – 29. October 2010 Aalto University, Espoo, Finland

agenda

problem description

relation to text-mining

case study and test setting

re-identification

IP 1, User 1: www.google.de

problem description

- small user group (e.g. users of a proxy-server)
- all HTTP-requests are recorded
- changing IP-addresses / different surfing sessions

perspective of a proxy server

perspective of a proxy server

perspective of a proxy server

modeling the classification problem

- each session (s) consists of a multiset $(x_1^{f_{x_1}}, x_2^{f_{x_2}}, \dots, x_m^{f_{x_m}})$
- each surfing session (s) is an instance of a class $c_i \in C$
- each class represents an user

 $-X_4$: www.google.de

X₃: www.cse.tkk.fi

X₂: www-sec.uni-r.de

X₁: www.wikipedia.de

classification of user sessions

similarity to text-mining-problems

word frequency and host frequency following a power-law

http://www.cs.princeton.edu/introcs/data/bible.txt

text-mining toolbox

multinomial naive bayes (MNB)

Training	Test			
	1			

$$P(\mathbf{f}|c_i) \sim \prod_{j=1}^m P(X = x_j|c_i)^{f_{x_j}}$$

- vector transformations
 - TF transformation
 - IDF transformation
 - cosine normalisation (N)

$$f_{x_j}^* = \log(1 + f_{x_j})$$
 $f_{x_j}^* = f_{x_j} \cdot \log \frac{n}{df_{x_j}}$
 $f_{x_j}^{\text{norm}} = \frac{f_{x_j}^*}{\|(f_{x_1}^*, \dots, f_{x_m}^*)\|}$

related work

- Pang et al. (2007)
 - re-identification of users in 802.11 wireless networks
- Yang (2008)
 - focus on fraud detection
- Kumpost (2009)
 - focus on re-identification of web users

test setting and case study

- test users
- local proxy server
- host obfuscation
- client/server architecture

key	value		
participants	28		
duration of study in days	57		
number of HTTP requests	2,684,736		
number of unique hosts	25,124		

data acquisition

host obfuscation

host-obfuscation study data

- hashing of hostnames
- + salt to prevent dictionary attacks
- + iterations to prevent building of own dictionary

user contribution on a daily basis

user contribution on a daily basis

re-identification attack

- attacker's view
 - limited knowledge
 - practical relevance
- simulations
 - for evaluating the driving factors
- countermeasures

attacker's view (training)

- $\Delta t = 24h$
- decision to track a specific user u^t on day t
- training with U^t classes on day t with S^t sessions

attacker's view (attack)

- $\Delta t = 24h$
- decision to track a specific user u^t on day t
- training with U^t classes on day t with S^t sessions
- on day t+1 assinging each session s to a class u_t
- evaluating the classification result for class c_u

prediction scheme of attacker's view

correctly classified by proxy-server

- attacker sucessfully recognizes the user
- attacker sucessfully recognizes the absence of the user

wrong classification – error is detectable for proxy-server

- more than one user was predicted to belong to class c_u

wrong classification – error not detectable for proxy-server

- attacker detects absence of user; but user was online
- attacker wrongly recognizes the user

results from the attacker's view

- user re-identification works
 - 60.5% correctly classified sessions
- and can be improved by vector transformations
 - 73.1% by applying TF-N transformation
- further improvements are possible
 - 77.6% by 'learning' the user habbits
- more improvements conceivable
 - timing-information
 - filenames
 - GET-parameters
 - destination-ports

_ ...

results from the attacker's view

- user re-identification works
 - 60.5% correctly classified sessions

none	N	IDF	IDF-N	TF	TF-N	TF-IDF	TF-IDF-N
60.5%	62.9%	65.0%	62.8%	56.0%	73.1%	66.1%	72.8%

- further improvements are possible
 - 77.6% by 'learning' the user habbits
- more improvements conceivable
 - timing-information
 - filenames
 - GET-parameters
 - destination-ports
 - ...

results from the attacker's view

- user re-identification works
 - 60.5% correctly classified sessions
- and can be improved by vector transformations
 - 73.1% by applying TF-N transformation
- further improvements are possible
 - 77.6% by 'learning' the user habbits
- more improvements conceivable
 - timing-information
 - filenames
 - GET-parameters
 - destination-ports

_ ...

simulations

- simulation of simultaneously surfing sessions
 - putting together the cronologically succeeding sessions
 - always 28 users / session
- in each experiment one parameter was modified
 - session duration
 - number of simultaneous users
 - offset between last training and first test session
 - number of consecutive training instances
- each experiment was repeated 25 times

session duration

longer session times support re-identification

numer of simultaneous users

the fewer simultaneous users the better it works

offset between test and training sessions

each user tends to act similar at the same time of the day

number of training instances

more training instances are better, but only few are needed

- using multiple, non-colluding proxy servers works
 - but is not practicable (at this early stage)
- more distribution schemes conceivable

analyzing a part of the host frequency distribution

- analyzing a part of the host frequency distribution
 - keep the most popular hosts

- analyzing a part of the host frequency distribution
 - keep the most popular hosts
 - can not prevent from user re-identification

conclusion and discussion

- re-identification as a feasible attack
- evaluated on a privacy preserving case study

- works well for small closed groups
- not only for relevant for proxy-servers

improvements in using context information

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]
"GET http://www.ab.com/index.html HTTP/1.0"
200 2326

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]
"GET http://www.ab.com/index.html HTTP/1.0"
200 2326

 improvements in gathering more realistic sessions