Skip to main content

Secure Computation, I/O-Efficient Algorithms and Distributed Signatures

  • Conference paper
Topics in Cryptology – CT-RSA 2012 (CT-RSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7178))

Included in the following conference series:

Abstract

We consider a setting where a set of n players use a set of m servers to store a large, private data set. Later the players decide on functions they want to compute on the data without the servers needing to know which computation is done, while the computation should be secure against a malicious adversary corrupting a constant fraction of the players and servers. Using packed secret sharing, the data can be stored in a compact way but will only be accessible in a block-wise fashion. We explore the possibility of using I/O-efficient algorithms to nevertheless compute on the data as efficiently as if random access was possible. We show that for sorting, priority queues and data mining, this can indeed be done. We show actively secure protocols of complexity within a constant factor of the passively secure solution. As a technical contribution towards this goal, we develop techniques for generating values of form r, g r for random secret-shared r ∈ ℤ q and g r in a group of order q. This costs a constant number of exponentiation per player per value generated, even if less than n/3 players are malicious. This can be used for efficient distributed computing of Schnorr signatures. We further develop the technique so we can sign secret data in a distributed fashion at essentially the same cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Vitter, S., Jeffrey: The input/output complexity of sorting and related problems. Commun. ACM 31, 1116–1127 (1988)

    Article  MathSciNet  Google Scholar 

  2. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the Spring Joint Computer Conference, AFIPS 1968, April 30-May 2, pp. 307–314. ACM, New York (1968)

    Google Scholar 

  3. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communication Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM, New York (1988)

    Chapter  Google Scholar 

  5. Blakley, G.R., Meadows, C.: Security of Ramp Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  6. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067, (2000), http://eprint.iacr.org/

  7. Cramer, R., Damgård, I.B., de Haan, R.: Atomic Secure Multi-Party Multiplication with Low Communication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 329–346. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Damgård, I., Kölker, J., Toft, T.: Secure computation, i/o-efficient algorithms and distributed signatures. Cryptology ePrint Archive (2011), http://eprint.iacr.org/

  10. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS, pp. 427–437 (1987)

    Google Scholar 

  11. Fitzi, M., Hirt, M.: Optimally efficient multi-valued byzantine agreement. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 163–168. ACM, New York (2006)

    Chapter  Google Scholar 

  12. Franklin, M., Yung, M.: Communication complexity of secure computation (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 699–710. ACM, New York (1992)

    Chapter  Google Scholar 

  13. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J. Cryptology 18(3), 247–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goodrich, M.T.: Randomized shellsort: A simple oblivious sorting algorithm. In: SODA, pp. 1262–1277 (2010)

    Google Scholar 

  15. Goodrich, M.T., Mitzenmacher, M.: Mapreduce parallel cuckoo hashing and oblivious ram simulations. CoRR, abs/1007.1259 (2010)

    Google Scholar 

  16. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp. 593–599. ACM, New York (2005)

    Google Scholar 

  17. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  19. Pratt, V.R.: Shellsort and Sorting Networks. Outstanding Dissertations in the Computer Sciences. Garland Publishing, New York (1972), http://www.inf.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm

    Google Scholar 

  20. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)

    Article  MATH  Google Scholar 

  21. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Toft, T.: Secure datastructures based on multiparty computation. Cryptology ePrint Archive, Report 2011/081 (2011), http://eprint.iacr.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damgård, I., Kölker, J., Toft, T. (2012). Secure Computation, I/O-Efficient Algorithms and Distributed Signatures. In: Dunkelman, O. (eds) Topics in Cryptology – CT-RSA 2012. CT-RSA 2012. Lecture Notes in Computer Science, vol 7178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27954-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27954-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27953-9

  • Online ISBN: 978-3-642-27954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics