Skip to main content

A Formal Model for Databases in DNA

  • Conference paper
Algebraic and Numeric Biology

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6479))

Abstract

Our goal is to better understand, at a theoretical level, the database aspects of DNA computing. Thereto, we introduce a formally defined data model of so-called sticker DNA complexes, suitable for the representation and manipulation of structured data in DNA. We also define DNAQL, a restricted programming language over sticker DNA complexes. DNAQL stands to general DNA computing as the standard relational algebra for relational databases stands to general-purpose conventional computing. The number of operations performed during the execution of a DNAQL program, on any input, is only polynomial in the dimension of the data, i.e., the number of bits needed to represent a single data entry. Moreover, each operation can be implemented in DNA using a constant number of laboratory steps. We prove that the relational algebra can be simulated in DNAQL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)

    Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  3. Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In: Proceedings 1997 IEEE International Conference on Evolutionary Computation, pp. 243–248 (1997)

    Google Scholar 

  5. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Applied Mathematics 71, 79–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [9], pp. 12–24

    Google Scholar 

  7. Chen, J., Deaton, R.J., Wang, Y.-Z.: A DNA-based memory with in vitro learning and associative recall. Natural Computing 4(2), 83–101 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Condon, A.E., Corn, R.M., Marathe, A.: On combinatorial DNA word design. Journal of Computational Biology 8(3), 201–220 (2001)

    Article  MATH  Google Scholar 

  9. Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  10. Diatchenko, L., Lau, Y.F., et al.: Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences 93(12), 6025–6030 (1996)

    Article  Google Scholar 

  11. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101(43), 15275–15278 (2004)

    Article  Google Scholar 

  12. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  13. Liu, Q., Wang, L., et al.: DNA computing on surfaces. Nature 403, 175–179 (1999)

    Google Scholar 

  14. Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Majumder, U., Reif, J.H.: Design of a biomolecular device that executes process algebra. In: Deaton and Suyama [9], pp. 97–105

    Google Scholar 

  16. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg (1998)

    Book  MATH  Google Scholar 

  17. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill (2002)

    Google Scholar 

  18. Reif, J.H.: Parallel biomolecular computation: models and simulations. Algorithmica 25(2-3), 142–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Rozenberg, G., Spaink, H.: DNA computing by blocking. Theoretical Computer Science 292, 653–665 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Survey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 275–289. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999)

    Article  Google Scholar 

  23. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 315(5805), 1585–1588 (2006)

    Article  Google Scholar 

  24. Shortreed, M.R., et al.: A thermodynamic approach to designing structure-free combinatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005)

    Article  Google Scholar 

  25. Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course in database queries. In: Proceedings 26th ACM Symposium on Principles of Database Systems, pp. 143–154. ACM Press (2007)

    Google Scholar 

  26. Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development of DNA Relational Database and Data Manipulation Experiments. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gillis, J.J.M., Van den Bussche, J. (2012). A Formal Model for Databases in DNA. In: Horimoto, K., Nakatsui, M., Popov, N. (eds) Algebraic and Numeric Biology. Lecture Notes in Computer Science, vol 6479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28067-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28067-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28066-5

  • Online ISBN: 978-3-642-28067-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics