Abstract
This paper presents a symbolic algorithm for computing the ODE systems which describe the evolution of the moments associated to a chemical reaction system, considered from a stochastic point of view. The algorithm, which is formulated in the Weyl algebra, seems more efficient than the corresponding method, based on partial derivatives. In particular, an efficient method for handling conservation laws is presented. The output of the algorithm can be used for a further investigation of the system behaviour, by numerical methods. Relevant examples are carried out.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramov, S.A., Le, H.Q., Li, Z.: OreTools: a computer algebra library for univariate ore polynomial rings. School of Computer Science CS-2003-12, University of Waterloo (2003)
Chyzak, F.: The Ore_algebra library. In: Maple, Maplesoft, Canada. Software
Dixmier, J.: Enveloping Algebras. American Mathematical Society (1996); (Translation of the french edition Algèbres enveloppantes published in 1974 by Bordas)
Érdi, P., Tóth, J.: Mathematical models of chemical reactions. Princeton University Press (1989)
Feller, W.: An introduction to probability theory and its applications, 2nd edn., vol. I. John Wiley and Sons, Inc., New York (1957)
Gillespie, C.S.: Moment-closure approximations for mass-action models. Systems Biology, IET 3(1), 52–58 (2009)
Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)
Kalinkin, A.V.: Markov branching processes with interaction. Russian Math. Surveys 57, 241–304 (2002)
Klamt, S., Stelling, J.: Stoichiometric and Constraint-based Modeling. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 73–96. The MIT Press, Cambridge (2006)
Leykin, A.: D-modules for macaulay 2. mathematical software. In: Mathematical Software, pp. 169–179. World Sci. Publishing, River Edge (2002)
Ozbudak, M., Thattai, M., Kurtser, I., Grossman, A.D.: Regulation of noise in the expression of a single gene. Nature Genetics 31, 69–73 (2002)
Paulsson, J.: Models of stochastic gene expression. Physics of Live Rev. 2, 157–175 (2005)
Paulsson, J., Elf, J.: Stochastic Modeling of Intracellular Kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)
Reutenauer, C.: Aspects mathématiques des réseaux de Petri. Masson (1989)
Vidal, S.A.: Groupe Modulaire et Cartes Combinatoires. Génération et Comptage. PhD thesis, Université Lille I, France (July 2010)
Singh, A., Hespanha, J.P.: Lognormal moment closures for biochemical reactions. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)
Tadao, M.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vidal, S., Petitot, M., Boulier, F., Lemaire, F., Kuttler, C. (2012). Models of Stochastic Gene Expression and Weyl Algebra. In: Horimoto, K., Nakatsui, M., Popov, N. (eds) Algebraic and Numeric Biology. Lecture Notes in Computer Science, vol 6479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28067-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-28067-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28066-5
Online ISBN: 978-3-642-28067-2
eBook Packages: Computer ScienceComputer Science (R0)