Skip to main content

A General Procedure for Accurate Parameter Estimation in Dynamic Systems Using New Estimation Errors

  • Conference paper
Algebraic and Numeric Biology

Abstract

The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed.

We previously proposed an approach for accurate parameter optimization by using Differential Elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system. The equivalent system has the same solution as the original system, and it includes high-order derivatives, which contain information about the form of the observed time-series data. The introduction of an equivalent system into the numerical parameter optimizing procedure resulted in the drastic improvement of the estimation accuracy, since our approach evaluates the difference of not only the values but also the forms between the measured and estimated data, while the classical numerical approach evaluates only the value difference. In this report, we describe the detailed procedure of our approach for accurate parameter estimation in dynamic systems. The ability of our approach is illustrated in terms of the parameter estimation accuracy, in comparison with classical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kitano, H.: System Biology: A Brief Overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  2. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  3. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numerical Algorithms 34, 282–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boulier, F., Denis-Vidal, F., Henin, T., Lemaire, F.: LÉPISME. In: Proceedings of the ICPSS Conference (2004), http://hal.archives-ouvertes.fr/hal-00140368

  5. Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1950)

    Book  MATH  Google Scholar 

  6. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  7. Seidenberg, A.: An elimination theory for differential algebra. Univ. California Publ. Math. (New Series) 3, 31–65 (1956)

    MathSciNet  Google Scholar 

  8. Wu, W.T.: On the foundation of algebraic differential geometry. Mechanization of Mathematics, Research Preprints 3, 2–27 (1989)

    Google Scholar 

  9. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: Proceedings of ISSAC 1995, pp. 158–166 (1995)

    Google Scholar 

  10. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Journal of AAECC 20(1), 73–121 (2009); (1997 Techrep. IT306 of the LIFL)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boulier, F.: The BLAD libraries (2004), http://www.lifl.fr/~boulier/BLAD

  12. Boulier, F.: Differential Elimination and Biological Modeling. Johann Radon Institute for Computational and Applied Mathematics (RICAM) Book Series 2, 111–139 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Boulier, F., Lemaire, F.: Differential Algebra and System Modeling in Cellular Biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 22–39. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Nakatsui, M., Horimoto, K.: Parameter Optimization in the network dynamics including unmeasured variables by the symbolic-numeric approach. In: Proc. of the Third International Symposium on Optimization and Systems Biology (OSB 2009), pp. 245–253 (2009)

    Google Scholar 

  15. Nakatsui, M., Horimoto, K.: Improvement of Estimation Accuracy in Parameter Optimization by Symbolic Computation. In: Proceedings of IEEE Multi-Conference on Systems and Control (in press)

    Google Scholar 

  16. Nakatsui, M., Horimoto, K., Okamoto, M., Tokumoto, Y., Miyake, J.: Parameter Optimization by Using Differential Elimination: a General Approach for Introducing Constraints into Objective Functions. BMC Systems Biology (in press)

    Google Scholar 

  17. Nakatsui, M., Horimoto, K., Lemaire, F., Ürgüplü, A., Sedoglavic, F., Boulier, F.: Brute force meets Bruno force in parameter optimization: Introduction of novel constraints for parameter accuracy improvement by symbolic computation. IET Systems Biology (in press)

    Google Scholar 

  18. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7, 142–162 (1954)

    MathSciNet  Google Scholar 

  19. Powell, M.J.D.: On the calculation of orthogonal vectors. Computer Journal 11, 302–304 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  21. Goldberg, D.D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    MATH  Google Scholar 

  22. Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proc. of Sixth International Symposium on Micro Machine and Human Science (Nagoya Japan), pp. 39–43. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks (Perth, Australia), pp. IV:1942– IV:1948. IEEE Service Center, Piscataway (1995)

    Chapter  Google Scholar 

  24. Jonikow, C.Z., Michalewicz, Z.: An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 31–36 (1991)

    Google Scholar 

  25. Ono, I., Kobayashi, S.: A real-coded genetic algorithm for function optimization using unimodal distribution crossover. In: Proc 7th ICGA, pp. 249–253 (1997)

    Google Scholar 

  26. Satoh, H., Ono, I., Kobayashi, S.: A new generation alternation model of genetic algorithm and its assessment. J. of Japanese Society for Artificial Intelligence 15(2), 743–744 (1997)

    Google Scholar 

  27. Novák, B., Tyson, J.J.: Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9(12), 981–991 (2008)

    Article  Google Scholar 

  28. Kwon, Y.K., Cho, K.H.: Quantitative analysis of robustness and fragility in biological networks based on feedback dynamics. Bioinformatics 24(7), 987–994 (2008)

    Article  Google Scholar 

  29. Tyson, J.J., Chen, K.C., Novák, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell. Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakatsui, M., Sedoglavic, A., Lemaire, F., Boulier, F., Ürgüplü, A., Horimoto, K. (2012). A General Procedure for Accurate Parameter Estimation in Dynamic Systems Using New Estimation Errors. In: Horimoto, K., Nakatsui, M., Popov, N. (eds) Algebraic and Numeric Biology. Lecture Notes in Computer Science, vol 6479. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28067-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28067-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28066-5

  • Online ISBN: 978-3-642-28067-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics