Abstract
Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order or a bucket order of all candidates, where bucket orders allow ties.
In this work we consider the generalization of total and bucket orders to partial orders and compare them by the nearest neighbor and the Hausdorff Kendall tau distances. For total and bucket orders these distances can be computed in \(\mathcal{O}(n \log n)\) time. We show that the computation of the nearest neighbor Kendall tau distance is NP-hard, 2-approximable and fixed-parameter tractable for a total and a partial order. The computation of the Hausdorff Kendall tau distance for a total and a partial order is shown to be coNP-hard.
The rank aggregation problem is known to be NP-complete for total and bucket orders, even for four voters and solvable in \(\mathcal{O}(n\log n)\) for two voters. It is NP-complete for two partial orders and the nearest neighbor Kendall tau distance. For the Hausdorff Kendall tau distance it is in \(\mathbf{\Sigma_2^p}\), but not in NP or coNP unless \(\ensuremath{\mathbf{NP}} = \ensuremath{\mathbf{coNP}} \), even for four voters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57(2), 284–300 (2010)
Aslam, J.A., Montague, M.H.: Models for metasearch. In: Proc. of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–284. ACM (2001)
Bartholdi, J.J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6(2), 157–165 (1989)
Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. 77(6), 1071–1078 (2011)
Betzler, N., Dorn, B.: Towards a dichotomy for the possible winner problem in elections based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010)
Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny rankings. Theor. Comput. Sci. 410(8), 4554–4570 (2009)
Biedl, T., Brandenburg, F.J., Deng, X.: On the complexity of crossings in permutations. Discrete Mathematics 309(7), 1813–1823 (2009)
Borda, J.C.: Mémoire aux les élections au scrutin (1781)
Brandenburg, F.J., Gleißner, A., Hofmeier, A.: Comparing and aggregating partial orders with Kendall tau distances. Tech. Rep. MIP-1102, Fakultät für Informatik und Mathematik, Universität Passau (2011)
Brandenburg, F.J., Gleißner, A., Hofmeier, A.: The Nearest Neighbor Spearman Footrule Distance for Bucket, Interval, and Partial Orders. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 352–363. Springer, Heidelberg (2011)
Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artif. Intell. Res. 10, 243–270 (1999)
Condorcet, M.J.: Éssai sur l’application de l’analyse à la probalité des décisions rendues à la pluralité des voix (1785)
Critchlow, D.E.: Metric methods for analyzing partially ranked data. Lecture Notes in Statistics, vol. 34. Springer, Heidelberg (1985)
Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy. Statist. Soc. B 39(2), 262–268 (1977)
Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms 8(1), 76–86 (2010)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proc. of the 10th International World Wide Web Conference (WWW 2010), pp. 613–622 (2001)
Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings. SIAM J. Discrete Math. 20(3), 628–648 (2006)
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1990)
Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005)
Knight, W.R.: A computer method for calculating Kendall’s tau with ungrouped data. J. Am. Stat. Assoc. 61(314), 436–439 (1966)
Lebanon, G., Lafferty, J.D.: Cranking: Combining rankings using conditional probability models on permutations. In: Proc. of the 19th International Conference on Machine Learning (ICML), pp. 363–370. Morgan Kaufmann (2002)
Lullus, R.: Artifitium electionis personarum (1283)
Muñoz, X., Unger, W., Vrt’o, I.: One Sided Crossing Minimization Is NP-Hard for Sparse Graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
Renda, M.E., Straccia, U.: Web metasearch: Rank vs. score based rank aggregation methods. In: Proc. of the 2003 ACM Symposium on Applied Computing (SAC), pp. 841–846. ACM (2003)
Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: A compendium. SIGACT News 33(3), 32–49 (2002)
Sese, J., Morishita, S.: Rank aggregation method for biological databases. Genome Informatics 12, 506–507 (2001)
Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)
Xia, L., Conitzer, V.: Determining possible and necessary winners under common voting rules given partial orders. In: Proc. of the 23rd AAAI Conference on Artificial Intelligence, pp. 196–201. AAAI Press (2008)
Yager, R.R., Kreinovich, V.: On how to merge sorted lists coming from different web search tools. Soft Comput. 3(2), 83–88 (1999)
van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brandenburg, F.J., Gleißner, A., Hofmeier, A. (2012). Comparing and Aggregating Partial Orders with Kendall Tau Distances. In: Rahman, M.S., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2012. Lecture Notes in Computer Science, vol 7157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28076-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-28076-4_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28075-7
Online ISBN: 978-3-642-28076-4
eBook Packages: Computer ScienceComputer Science (R0)