Skip to main content

Comparing and Aggregating Partial Orders with Kendall Tau Distances

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7157))

Included in the following conference series:

Abstract

Comparing and ranking information is an important topic in social and information sciences, and in particular on the web. Its objective is to measure the difference of the preferences of voters on a set of candidates and to compute a consensus ranking. Commonly, each voter provides a total order or a bucket order of all candidates, where bucket orders allow ties.

In this work we consider the generalization of total and bucket orders to partial orders and compare them by the nearest neighbor and the Hausdorff Kendall tau distances. For total and bucket orders these distances can be computed in \(\mathcal{O}(n \log n)\) time. We show that the computation of the nearest neighbor Kendall tau distance is NP-hard, 2-approximable and fixed-parameter tractable for a total and a partial order. The computation of the Hausdorff Kendall tau distance for a total and a partial order is shown to be coNP-hard.

The rank aggregation problem is known to be NP-complete for total and bucket orders, even for four voters and solvable in \(\mathcal{O}(n\log n)\) for two voters. It is NP-complete for two partial orders and the nearest neighbor Kendall tau distance. For the Hausdorff Kendall tau distance it is in \(\mathbf{\Sigma_2^p}\), but not in NP or coNP unless \(\ensuremath{\mathbf{NP}} = \ensuremath{\mathbf{coNP}} \), even for four voters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57(2), 284–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aslam, J.A., Montague, M.H.: Models for metasearch. In: Proc. of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–284. ACM (2001)

    Google Scholar 

  3. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6(2), 157–165 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. 77(6), 1071–1078 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betzler, N., Dorn, B.: Towards a dichotomy for the possible winner problem in elections based on scoring rules. J. Comput. Syst. Sci. 76(8), 812–836 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny rankings. Theor. Comput. Sci. 410(8), 4554–4570 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biedl, T., Brandenburg, F.J., Deng, X.: On the complexity of crossings in permutations. Discrete Mathematics 309(7), 1813–1823 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borda, J.C.: Mémoire aux les élections au scrutin (1781)

    Google Scholar 

  9. Brandenburg, F.J., Gleißner, A., Hofmeier, A.: Comparing and aggregating partial orders with Kendall tau distances. Tech. Rep. MIP-1102, Fakultät für Informatik und Mathematik, Universität Passau (2011)

    Google Scholar 

  10. Brandenburg, F.J., Gleißner, A., Hofmeier, A.: The Nearest Neighbor Spearman Footrule Distance for Bucket, Interval, and Partial Orders. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 352–363. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artif. Intell. Res. 10, 243–270 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Condorcet, M.J.: Éssai sur l’application de l’analyse à la probalité des décisions rendues à la pluralité des voix (1785)

    Google Scholar 

  13. Critchlow, D.E.: Metric methods for analyzing partially ranked data. Lecture Notes in Statistics, vol. 34. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  14. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy. Statist. Soc. B 39(2), 262–268 (1977)

    MathSciNet  MATH  Google Scholar 

  15. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms 8(1), 76–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  17. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proc. of the 10th International World Wide Web Conference (WWW 2010), pp. 613–622 (2001)

    Google Scholar 

  18. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings. SIAM J. Discrete Math. 20(3), 628–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1990)

    Google Scholar 

  20. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theor. Comput. Sci. 349(3), 382–391 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Knight, W.R.: A computer method for calculating Kendall’s tau with ungrouped data. J. Am. Stat. Assoc. 61(314), 436–439 (1966)

    Article  MATH  Google Scholar 

  22. Lebanon, G., Lafferty, J.D.: Cranking: Combining rankings using conditional probability models on permutations. In: Proc. of the 19th International Conference on Machine Learning (ICML), pp. 363–370. Morgan Kaufmann (2002)

    Google Scholar 

  23. Lullus, R.: Artifitium electionis personarum (1283)

    Google Scholar 

  24. Muñoz, X., Unger, W., Vrt’o, I.: One Sided Crossing Minimization Is NP-Hard for Sparse Graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

    Google Scholar 

  26. Renda, M.E., Straccia, U.: Web metasearch: Rank vs. score based rank aggregation methods. In: Proc. of the 2003 ACM Symposium on Applied Computing (SAC), pp. 841–846. ACM (2003)

    Google Scholar 

  27. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: A compendium. SIGACT News 33(3), 32–49 (2002)

    Article  Google Scholar 

  28. Sese, J., Morishita, S.: Rank aggregation method for biological databases. Genome Informatics 12, 506–507 (2001)

    Google Scholar 

  29. Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xia, L., Conitzer, V.: Determining possible and necessary winners under common voting rules given partial orders. In: Proc. of the 23rd AAAI Conference on Artificial Intelligence, pp. 196–201. AAAI Press (2008)

    Google Scholar 

  31. Yager, R.R., Kreinovich, V.: On how to merge sorted lists coming from different web search tools. Soft Comput. 3(2), 83–88 (1999)

    Article  Google Scholar 

  32. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandenburg, F.J., Gleißner, A., Hofmeier, A. (2012). Comparing and Aggregating Partial Orders with Kendall Tau Distances. In: Rahman, M.S., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2012. Lecture Notes in Computer Science, vol 7157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28076-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28076-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28075-7

  • Online ISBN: 978-3-642-28076-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics