Abstract
Processes are not always executed as expected. Deviations assure the necessary flexibility within a company, but also increase possible internal control weaknesses. Since the number of cases following such a deviation can grow very large, it becomes difficult to analyze them case-by-case. This paper proposes a semi-automatic process deviation analysis method which combines process mining with association rule mining to simplify the analysis of deviating cases. Association rule mining is used to group deviating cases into business rules according to similar attribute values. Consequently, only the resulting business rules need to be examined on their acceptability which makes the analysis less complicated. Therefore, this method can be used to support the search for internal control weaknesses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alles, M., Vasarhelyi, M.: Process Mining of Event Logs in Auditing: Opportunities and Challenges. In: 1st International Symposium on Accounting Information Systems, Orlando (2010)
Bozkaya, M., Gabriels, J., van der Werf, J.M.: Process Diagnostics: a Method Based on Process Mining. In: Proceedings of the International Conference on Information, Process, and Knowledge Management: Eknow 2009, pp. 22–27 (2009)
Crerie, R., Baião, F.A., Santoro, F.M.: Discovering Business Rules through Process Mining. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp. 136–148. Springer, Heidelberg (2009)
Depaire, B., Vanhoof, K., Wets, G.: ARUBAS, An Association Rule Based Similarity Framework for Associative Classifiers, vol. 8, pp. 692–699 (2008)
Dobre, M.M.: Studies Bucharest Academy of Economic. Disclosure of Internal Control Deficiencies under the Sarbanes_Oxley Act of 2002. In: Amis 2010 - Proceedings of the 5th International Conference, Accounting and Management Information Systems, pp. 13–37 (2010)
Drymonas, E., Zervanou, K., Petrakis, E.G.M.: Unsupervised Ontology Acquisition from Plain Texts: The OntoGain System. In: Hopfe, C.J., Rezgui, Y., Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 277–287. Springer, Heidelberg (2010)
García, E., Romero, C., Ventura, S., de Castro, C.: Using Rules Discovery for the Continuous Improvement of e-Learning Courses. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 887–895. Springer, Heidelberg (2006)
García, E., Romero, C., Ventura, S., de Castro, C.: Evaluating Web Based Instructional Models Using Association Rule Mining. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 16–29. Springer, Heidelberg (2009)
Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.: Change Mining in Adaptive Process Management Systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)
Jans, M.: A Framework for Internal Fraud Risk Reduction: The IFR Framework. PhD thesis, Hasselt University (2009)
Jans, M., Depaire, B., Vanhoof, K.: Does Process Mining Add to Internal Auditing? An Experience Report. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 31–45. Springer, Heidelberg (2011)
Jans, M., Lybaert, N., Vanhoof, K.: Business process mining for internal fraud risk reduction: results of a case study. In: Proceedings of Induction of Process Models (2008)
Li, J.: Tutorial fuzzy miner plug-in 1.2.2 (2010)
Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley Information Technology (2003)
Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)
Scheffer, T.: Finding association rules that trade support optimally against confidence. Intelligent Data Analysis 9(4), 381–395 (2005)
van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process Mining and Verification of Properties: An Approach Based on Temporal Logic. In: Meersman, R. (ed.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)
van der Aalst, W.M.P., van Hee, K., van der Werf, J.M., Kumar, A., Verdonk, M.: Conceptual model for online auditing. Decision Support Systems 50(3), 636–647 (2011)
van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing 2.0: Using process mining to support tomorrow’s auditor. Computer 43(3), 90–93 (2010)
Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing integrated life cycle support in process-aware information systems. International Journal of Cooperative Information Systems 18(1), 115–165 (2009)
Weber, B., Wild, W., Lauer, M., Reichert, M.: Improving Exception Handling by Discovering Change Dependencies in Adaptive Process Management Systems. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 93–104. Springer, Heidelberg (2006)
Weijters, A., van der Aalst, W.M.P.: Rediscovering workflow models from event-based data using little thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Swinnen, J., Depaire, B., Jans, M.J., Vanhoof, K. (2012). A Process Deviation Analysis – A Case Study. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds) Business Process Management Workshops. BPM 2011. Lecture Notes in Business Information Processing, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28108-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-28108-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28107-5
Online ISBN: 978-3-642-28108-2
eBook Packages: Computer ScienceComputer Science (R0)