
DSToolkit: An architecture for flexible
Dataspace Management?

Cornelia Hedeler1, Khalid Belhajjame1, Lu Mao1, Chenjuan Guo1,
Ian Arundale1, Bernadette Farias Lóscio2, Norman W. Paton1,

Alvaro A.A. Fernandes1, and Suzanne M. Embury1

1 School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK

chedeler, khalidb, maol, guoc, arundai7, norm, alvaro,

embury@cs.manchester.ac.uk
2 Universidade Federal de Pernambuco, Centro de Informtica

Cidade Universitria 50740-540 - Recife, PE - Brasil
bfl@cin.ufpe.br

Abstract. The vision of dataspaces is to provide various of the benefits
of classical data integration, but with reduced up-front costs. Combining
this with opportunities for incremental refinement enables a ‘pay-as-you-
go’ approach to data integration, resulting in simplified integrated access
to distributed data. It has been speculated that model management could
provide the basis for Dataspace Management, however, this has not been
investigated until now.
Here, we present DSToolkit, the first dataspace management system that
is based on model management, and therefore, benefits from the flexi-
bility provided by the approach for the management of schemas repre-
sented in heterogeneous models, supports the complete dataspace lifecy-
cle, which includes automatic initialisation, maintenance and improve-
ment of a dataspace, and allows the user to provide feedback by annotat-
ing result tuples returned as a result of queries the user has posed. The
user feedback gathered is utilised for improvement by annotating, select-
ing and refining mappings. Without the need for additional feedback on
a new data source, these techniques can also be applied to determine
its perceived quality with respect to already gathered feedback and to
identify the best mappings over all sources including the new one.

Keywords: Dataspace Management System, Dataspace lifecycle, Incre-
mental improvement

1 Introduction

1.1 Motivation

Data integration in various forms has been the focus of ongoing research in the
database community for over 20 years. The objective is to provide an integrated

? The work reported in this paper was supported by a grant from the EPSRC.

2

view and access to multiple heterogeneous data sources. Typically this involves
developing a single global integration schema to which the schemas of the sources
are related by some form of mapping. Using those mappings, queries posed over
the central schema are then unfolded [24], optimised by a distributed query pro-
cessor and evaluated over the sources. Various systems have been developed that
are based on the approach of classical data integration, e.g., DB2 [23] or OpenII
[45]. However, defining and maintaining mappings between a global integration
schema and various source schemas has proven to be labour intensive [13], in
particular in a world of ever more data sources that evolve over time to account
for the changes in the data to be stored. This means that classical data inte-
gration is most effective when integrating small numbers of stable data sources,
but less so for the integration of large numbers of evolving data sources, or for
on-the-fly data integration.

The vision of dataspaces [19, 25] aims to realise various of the benefits of
classical data integration but with much lower startup costs thereby support-
ing integration on demand but with lower quality of the resulting integration.
The quality of the integration can then be improved over time in a ‘pay-as-
you-go’ manner utilising feedback provided by the user or developer. Various
dataspace management systems have been proposed in recent years, e.g., SE-
MEX [18], iMeMex [15], PayGo [35], and Q [48].

Bernstein et al. [8] speculated that model management could form the basis
of dataspace management, but so far this has not been investigated as none of
the dataspace management systems proposed so far are based on model manage-
ment, and nor have any of the existing model management systems (e.g., MISM
[1], Rondo [39], GeRoMe [31] or Automed [46]) been extended to support the
incremental improvement that is integral to dataspace management systems.

Dataspace systems can vary in numerous dimensions [27, 26], but as illus-
trated in the surveys [27, 26] the dataspace systems proposed so far tend to
be somewhat narrowly focussed, targeting specific applications and making as-
sumptions that do not hold elsewhere, e.g., SEMEX [18], a personal information
management system, requires domain knowledge to identify associations between
schemas which may not always be available, iMeMex, also managing personal
information, requires path-based queries called trails [15] that are provided man-
ually and require the user to have a good understanding of the schemas and the
relationships between them, a requirement that shuts out the casual user, and
PayGo [35], integrating web sources, only supports a union schema as an inte-
gration schema.

In this paper we present DSToolkit, an architecture for flexible dataspace
management that is based on model management, thereby benefiting from the
flexibility of being able to manage multiple heterogeneous models, that supports
the whole lifecycle of a dataspace [26] including automatic support for initialisa-
tion, also called bootstrapping, but also provides support for maintenance in the
context of source changes and that provides a means for incremental improve-
ment of the dataspace by the casual user.

3

1.2 Overview of the Approach

DSToolkit builds on the foundations provided by model management systems,
in particular MISM [1] in the sense that we use a model-independent super-
model to capture schemas represented by heterogeneous models. Furthermore,
DSToolkit contains implementations of various model management operators [7,
6, 8] to support the management of multiple schemas. Model management op-
erators implemented include match, merge, difference and compose. Utilising
the results of model management research enables us to provide a system that
is flexible in its management of multiple heterogeneous schemas and the associ-
ations between constructs in those schemas and to support the maintenance of
the dataspace. For example, constructs can be attributes or tables in relational
schemas, or simple or complex elements in XML schemas.

However, various changes and extensions are necessary to turn a model man-
agement system into a dataspace management system:

1. We have generalised the supermodel even further to emphasise the common-
alities in terms of the role the constructs play in the various models (e.g.,
whether they represent relationships between other constructs, can have val-
ues, or contain other constructs), rather than their differences. The more
specific information on their differences is required for ModelGen [1], but
only to a certain extent needed to be able to express relationships between
constructs or to query the underlying data sources.

2. We have introduced various kinds of morphisms, which are not as integral to
MISM as they are to other model management platforms, such as Rondo [39].
The morphisms we introduce represent associations between elements in dif-
ferent schemas at different levels of abstraction, and are matches, schematic
correspondences and mappings. Matches give an indication that two con-
structs are similar to a certain extend and tend to be the relationships re-
turned by matching algorithms. Schematic correspondences [36] are based on
schematic heterogeneities introduced in [33, 32] and represent richer seman-
tic relationships between schema elements, such as same or different names
for the same construct, missing constructs (e.g., attributes), or horizontal- or
vertical partitioning. Mappings are executable expressions that specify how
the data that conforms to one schema needs to be restructured to conform
to another schema.

3. We have altered various model management operators in that the majority
of them are defined to operate on schematic correspondences rather than
matches as they are semantically richer than matches, and we have intro-
duced additional operators for the automatic inference of schematic corre-
spondences (inferCorrespondence) in addition to the operators match and
merge for full support of the automatic initialisation or bootstrapping of a
dataspace starting with the identification of matches followed by the infer-
ence of schematic correspondences and the automatic generation of mappings
[36]. To support the usage of the dataspace the operator evaluateQuery has
been added, which enables queries that are posed over any schema repre-

4

sented in the supermodel to be evaluated over multiple data sources using
query unfolding [24].

4. In order to enable the incremental improvement of a dataspace, we have
added the functionality to gather user feedback on query results, and to
utilise the feedback provided to annotate the mappings with their precision
and recall with respect to the feedback, to select the best mappings for future
query executions and to refine the mappings (operators annotateMappings,
selectMappings, and refineMappings) [4].

By building on top of the results of model management research and extend-
ing the model management operators with those listed above, we have created
a toolkit that provides support for flexible management of schemas represented
using heterogeneous models, enables the reaction to changes in the schemas of
the underlying sources or the addition of new sources, provides flexibility with re-
spect to the data models queries can be posed over and the ability to handle mul-
tiple integration schemas rather than just a single one. Furthermore, DSToolkit
can support the whole dataspace lifecycle including initialisation, maintenance
and improvement and it enables the casual user to provide feedback.

1.3 Contributions of the Paper

We present here DSToolkit, an architecture for flexible dataspace management
that builds on the foundations provided by model management. The paper de-
scribes how the toolkit can be used to create dataspaces that exhibit various
properties along the dimensions of dataspaces [26] rather than being limited to
a specific point solution. The contributions of this paper are:

– Introduction of the DSToolkit and its comparison with prominent model
management, data integration and dataspace management systems.

– Demonstration of its flexibility and ability to support the creation of datas-
paces with different properties according to the dimensions of dataspaces
using various examples.

– Illustration of the support that DSToolkit provides for the maintenance of a
dataspace.

– Demonstration of the benefits that can be derived from user feedback, not
just with respect to data sources already added to the dataspace, but also
with respect to new data sources.

1.4 Organisation of the Paper

The paper is organised as follows: Section 2 presents a motivating example
and gives a brief overview of the main functionality, capabilities and usage of
DSToolkit. Section 3 places DSToolkit in the context of other prominent data
integration and dataspace management systems, and discusses their commonal-
ities and differences. Section 4 provides an overview of the architecture of the

5

SuperAbstract

SuperLexical

Schema s1:

 country(name, code, capital, area, population)

 city(name, country, population, longitude, latitude)

Schema s2:

 countries(name, code, capital, area, population)

 cities(name, country, population)

 location(city, country, longitude, latitude)

Schema s3:

 <xs:element name = "country">

 <xs:element name = "country_name"/>

 <xs:element name = "code"/>

 <xs:element name = "capital"/>

 <xs:element name = "area"/>

 <xs:element name = "population"/>

 <xs:element ref = "language"/>

 </xs:element>

 <xs:element name = "language">

 <xs:element name = "language_name"/>

 <xs:element name = "country"/>

 <xs:element name = "percentage"/>

 </xs:element>

Fig. 1. Example source schemas.

toolkit, followed by Section 5 which describes how DSToolkit supports the ini-
tialisation and shaping of various kinds of dataspaces and how it can be queried.
Section 6 explains how the toolkit can be utilised to improve the dataspace and
to evaluate complementary data sources with respect to already provided user
feedback. Section 7 concludes the paper.

2 Motivating Example

This section introduces a motivating example and uses it to illustrate key features
of DSToolkit, such as the flexibility provided by model management operators for
managing multiple schemas and the associations between them, and the ability
to utilise user feedback gathered on query result tuples to improve mappings
over previously integrated sources.

As an example, we assume that the user would like to create a dataspace con-
taining information on countries, their cities, the languages spoken in the coun-
tries, and that s/he has identified three data sources d1,...,d3 with the schemas
s1,...,s3 shown in Figure 1. We further assume that d1 contains information on
european countries, d2 information on african countries, and d3 contains infor-
mation on the languages spoken in all countries.

DSToolkit provides the user with a number of options to create a dataspace
that meets the requirements, some of which are introduced in the following.
After the import of the data sources into the system, DSToolkit offers multiple
options for choosing or generating the preferred view of the data:

– Provide a manually defined global schema;
– Use the schema of any of the imported data sources;
– Use model management operators to generate a schema that meets the user’s

requirements.

As none of the three data sources in the example contains information on coun-
tries, their cities and their spoken languages, neither of the schemas of the im-
ported sources can be utilised as global schema, leaving the other two options.
One option would be to specify a schema manually that is to be used as a global
schema and import it. However, as DSToolkit is based on model management,
there is also the option to use the flexibility provided by the model management
operators to generate a schema that conforms to the desired view of the data.

This can be achieved as follows: (i) Matching schemas pairwise with each
other to identify the similarities, called matches, between them. Examples of

6
s3:

 country

 country_name

 code

 capital

 area

 population

 language

 language_name

 country

 percentage

s1:

 country

 name

 code

 capital

 area

 population

 city

 name

 country

 population

 longitude

 latitude

s2:

 countries

 name

 code

 capital

 area

 population

 cities

 name

 country

 population

 location

 city

 country

 longitude

 latitude

A2

A3

A1

Fig. 2. Matches between source schemas.

matches between constructs in schemas s1, s2 and s3 are shown in Figure 2.
Some of the matches identified may be coincidental, e.g., the match between
s1.country. name and s2.cities.name, which has been identified due to the same
name of the two attributes. (ii) Using the information provided by the matches,
semantically richer sets of schematic correspondences are inferred. Examples of
schematic correspondences include Same name, same construct (SNSC), which
are represented in Figure 3 by lines between the corresponding constructs. Con-
structs can be attributes or tables in relational schemas or simple or complex
elements in XML schemas. Other examples of schematic correspondences are
Different name same construct (DNSC) (e.g., the attributes s1.city.name and
s2.location.city represent the same constructs, i.e., the names of cities, but have
different names), Vertical partitioning (VP) (e.g., the two tables cities and
location in s2 are a vertical partitioning of the table city in s1), Horizontal
Partitioning (HP), and missing constructs, e.g., an attribute that is present
in a table in one schema but not in the table that has been identified as cor-
responding in another schema. (iii) After the correspondences between schemas
have been identified, they can be used to generate a merged integration schema.

The schema sm2 , which is the schema generated by merging s1, s2 and s3 is
shown in Figure 4. The schematic correspondences between sm2

and each of the
source schemas are similar to those shown in Figure 3.

When the user is happy with the global schema created, the mappings be-
tween the global schema and each of the source schemas can be generated from
the schematic correspondences between them [36]. The mappings for our exam-
ple are shown in Figure 5.

After the mappings have been generated, the user can pose queries over the
merged schema sm2

. It is also possible to pose queries over any of the other
schemas, e.g., source schemas or previously generated merged schemas, as long
as the mappings between the schema and all the source schemas have been
generated from schematic correspondences.

For example, let us assume that the user would like to get information on
countries that are european and mediterranean, however, neither of the sources
s/he has included so far in the dataspace contains information specific to mediter-
ranean countries, though, as mentioned earlier d1 contains information on euro-

7

s3:

 country

 country_name

 code

 capital

 area

 population

 language

 language_name

 country

 percentage

s1:

 country

 name

 code

 capital

 area

 population

 city

 name

 country

 population

 longitude

 latitude

s2:

 countries

 name

 code

 capital

 area

 population

 cities

 name

 country

 population

 location

 city

 country

 longitude

 latitude

 - Same name same construct

DNSC - Different name same construct

VP - Vertical partitioning

DN
SC

DNSCDNSCCs
1
-s

3

Cs
2
-s

3

DNSC

VP

DNSC

Cs
1
-s

2

Fig. 3. Motivating example - schematic correspondences between source schemas.

country(name, code, capital, area, population)
city(name, country, population, longitude, latitude)
language(country, name, percentage)

Fig. 4. Merged schema sm2

pean countries. Let us also assume that the user would like to run the query q1

Select * from country o posed over sm2
. As all three source schemas s1, s2

and s3 contain information on countries, the mappings map1, map3 and map5

are used to expand the query over the sources using query unfolding [24], which
will result in european (from d1), african (from d2) and all other countries (from
d3) to be returned. To improve the initial integration, DSToolkit allows the user
to annotate the query results indicating whether a result tuple was expected, i.e.,
is a true positive, or unexpected, i.e., is a false positive. We also allow the user to
provide tuples that s/he expected to be returned as result but were not returned,
i.e., false negatives. In our example, the user has annotated a small number of re-
sult tuples as shown in Table 1. The table also shows which mappings produced
which of the annotated result tuples. Using the feedback, the mappings that
produced the results are annotated with their precision and recall with respect
to the user feedback provided.

Given existing feedback, the user may pose restriction on the mappings to be
used when evaluating the query, e.g., to ensure that the proportion of the results
that are true positives is high compared with those that are false positives. To
do so, the user specifies a query together with requirements in terms of precision
and recall that should be met by the query results returned. To achieve this, M ′

⊆ M are selected that are to be used to expand the query [4].

map1 = <sm2
.country, select o.name, o.code, o.capital, o.area, o.population from s1.country o>

map2 = <sm2
.city, select c.name, c.country, c.population, c.longitude, c.latitude from s1.city c>

map3 = <sm2 .country, select o.name, o.code, o.capital, o.area, o.population from s2.countries o>
map4 = <sm2

.city, select c.name, c.country, c.population, l.longitude, l.latitude
from s2.cities c, s2.location l
where c.name = l.city and c.country = l.country>

map5 = <sm2
.country, select o.country name as name, o.code, o.capital, o.area, o.population

from s3.country o>
map6 = <sm2

.language, select l.country, l.language name as name, l.percentage from s3.country.language l>

Fig. 5. Mappings between sm2 and s1, s2, s3

8
Table 1. Annotated result tuples of q1.

name code capital area population expected not expected mappings
France F Paris 547030 58317450

√
map1, map5

Turkey TR Ankara 780580 62484478
√

map1, map5
Italy I Rome 301230 57460274

√
map1, map5

Tunisia TN Tunis 163610 9019687
√

map3, map5
Morocco MA Rabat 446550 29779156

√
map3, map5

Algeria DZ Algier 2.38174e+06 29183032
√

map3, map5

3 Related Work

This section discusses related work and compares it with DSToolkit. The work
presented comes from several related areas, namely, traditional data integra-
tion, model management, dataspace management, evaluating the data quality of
complementary data sources, and utilising feedback to support data integration.

3.1 On Traditional Data Integration

As data integration has been a research focus of the database community for
several decades now, many contributions have been made. Here, we focus on two
prominent representative examples, namely the IBM Information Server (IIS)3, a
commercial information integration platform [22], and Open II4, an open source
information integration suite [45].

The IBM Information Server provides a suite of tools that provide support
for the various stages of information integration for both data materialisation
or federation approaches [22]. However, even though a large number of tools
are provided, they still require significant manual effort at various stages of the
integration process, e.g., up-front to understand the data to be integrated, define
an integration schema and data quality rules, or during the integration process
to define or adjust mappings or to specify how to reconcile duplicates [22].

OpenII [45] provides an extensible platform for information integration con-
sisting of a repository which uses a model-generic metamodel to represent schemas
and mappings and a number of importers/exporters. DSToolkit also uses a
model-generic metamodel to capture information on heterogeneous schemas and
morphisms (matches, schematic correspondences, mappings). Open II provides
a number of tools to aid several information integration tasks, e.g., Harmony for
schema matching, visualising and debugging of matches identified by multiple
linguistic matchers, Unity to support the semi-automatic generation of mediated
schemas, RMap and XMap, to generate the code needed for data exchange from
matches identified by Harmony and confirmed or adjusted by the user.

As both IIS and OpenII provide support for traditional data integration they
require a significant manual effort during the integration process and a good un-
derstanding of schemas and associations between them, thereby, making it almost
impossible for the casual user to utilise either of them. In contrast, DSToolkit
provides support for a fully automatic bootstrapping of the dataspace, i.e., the
integration of various data sources, and only requires user interaction to provide

3 www.ibm.com/software/data/infosphere/
4 http://openii.sourceforge.net/

9

feedback on result tuples, which can be provided by a casual user. Furthermore,
neither IIS or OpenII are based on model management, even though OpenII
makes use of a model-generic metamodel to represent schemas and matches, and
therefore, are unable to benefit from the flexibility model management operators
provide for handling multiple heterogeneous schemas and associations between
their elements.

3.2 On Model Management

Model management [7, 8] has been the focus of ongoing research for a number of
years now and several systems have been proposed, e.g., Rondo [39], MISM [1],
GeRoMe [31] and Automed [46]. All these systems use model-generic metamodels
to abstract over the specifics of particular models and all provide importers at
least for relational and XML schemas. The systems also provide a representation
of morphisms between elements of the various schemas. The majority of the
systems provide implementations for the model management operators match,
which infers the morphisms between elements in different schemas, merge, which
merges two schemas using the information provided in the morphisms between
their elements, modelGen, which transforms a schema represented in one model
into an equivalent schema represented in a different model, and some provide
implementations of compose, which composes morphisms between schemas a, b
and schemas b, c into morphisms between schemas a, c, and difference which
returns the portion of a schema that does not participate in the morphisms
between the schema and another schema.

Even though some of the systems have been around for a number of years
and the purpose of being able to integrate multiple schemas is eventually to be
able to query across their corresponding sources, only some of the model man-
agement platforms, namely GeRoMe [31] and Automed [37], have been extended
for query answering. With the provision of model management operators, the
majority of the platforms provide sufficient support for the maintenance in case
of evolving schemas or additional sources to be integrated, however, even though
it was speculated that model management platforms could provide the basis for
dataspace management [8], the existing platforms tend not to have an analogue
to inferCorrespondence, and have not been extended into a dataspace man-
agement platform that provides support for the ‘pay-as-you-go’ improvement
that is characteristic of dataspace management.

3.3 On Dataspace Management

As dataspaces represent a fairly recent addition to the data integration land-
scape, the proposals have yet to reflect a shared understanding of best practice,
and thus are diverse in their contributions across a variety of dimensions [26].
Proposals range from SEMEX [18], and iMeMex [15], both of which integrate
personal information, over PayGo [35], which is targeted at the integration of
web sources, to Q [48], the query system of Orchestra [29], a collaborative
data sharing system. None of the existing proposals for dataspaces are based on

10

model management, making DSToolkit the first dataspace management system
based on the solid foundations of model management and benefitting from the
flexibility in managing diverse schemas provided by the approach. The majority
of dataspace proposals tend to be point solutions addressing specific issues, but
do not present a flexible approach that can be instantiated differently to create
dataspaces with different properties along the dimensions identified in [26].

For example, SEMEX [18] requires an integration schema to be provided
manually, whereas PayGo[35] forms a union schema, but neither approach pro-
vides support for generating a merged schema, as DSToolkit does in addition
to accepting a manually specified integration schema or the option of choos-
ing any of the source schemas as preferred view over the integrated data. SE-
MEX also provides no support for incremental improvement and even though
PayGo[35] advocates incremental improvement, no details are provided on how
this is achieved. In contrast, iMeMex starts with a union schema of all the in-
tegrated schema and provides support for manual improvement in the form of
path-based queries called trails[15]. In contrast to our approach for incremental
improvement which only requires users to indicate which result tuples meet their
expectations, the need to provide path-based queries seems likely to exclude the
casual user from improving the dataspace.

Similar to DSToolkit, UDI [14] can generate a merged schema automatically
by matching source schemas and deriving a merged schema, but it makes simpli-
fying assumptions in that the source schemas are limited to relational schemas
with a single relation. UDI also provides no support for incremental improve-
ment, which is the focus of Roomba [30]. Users are asked to provide feedback on
matchings and mappings that have been determined by the system to provide
the most benefit to the integration if annotated. Rather than requiring users
to annotate matchings and mappings, Q [48], the query system of Orchestra
[29], asks users to provide feedback on the query results, similar to the feedback
gathered by DSToolkit, and their rankings. This information is then propagated
to the rankings of the matchings and mappings that produced the results.

3.4 On Evaluating the Data Quality of Complementary Data
Sources

Data quality can be seen as how well the data meets the user’s requirements, i.e.,
can be characterised as its “fitness for use”[49]. There are multiple measurable
quality dimensions, e.g., accuracy, completeness, or currency [49].

A number of approaches have been proposed for quality-driven information
integration (e.g., [42, 44]). In [42] the authors propose an approach for quality-
aware query plan creation and selection of the plan with the best weighted
aggregate quality score according to several specific quality criteria.

In the Data Quality Broker, which is part of the DaQuinCIS architecture
[44], queries posed over a global schema are unfolded into queries over multiple
sources, an approach also followed in DSToolkit. The values of results returned by
each source are annotated by the source with estimates of their data quality, e.g.,
their accuracy or completeness. The data quality dimensions are defined such

11

that they can be measured, e.g., the accuracy of a value is measured in terms
of its edit distance to values in reference dictionaries, and the completeness of
a result tuple is measured in terms of the number of its attributes that are not
null. This information is used to reconcile result tuples that refer to the same
entities, but also to propagate the best information as determined by the quality
values attached back to the sources which have returned data of lower quality
to improve the overall data quality in the cooperative information system.

In contrast to both approaches, where information on the quality of the data
is provided by the source providers themselves, in DSToolkit the quality of the
information provided by a source is inferred from the user feedback provided
on results of queries evaluated over those sources. The annotation of mappings
with quality criteria in [42] could be compared to the annotation of mappings
with their precision and recall with respect to the user feedback provided on
the query results in DSToolkit, with the difference of the origin of the quality
annotation. We could see precision as an indication for the accuracy and recall
as an indication of the completeness of the results returned by a given mapping.

3.5 On Using Feedback to Support Data Integration

User feedback is a growing theme in data integration literature [5]. It is seen
by many researchers as the key ingredient to face the difficulties that lie in the
specification of data integration components. For example, Chiticariu et al.[12]
proposed a method for generating integration schema. To ensure the suitabil-
ity of the schema generated to user requirements, feedback is solicited from
end-users. McCann et al. [38] developed a community-based system that solicits
feedback from end users with the view to informing the schema matching oper-
ation. In doing so, the feedback is used to assess the matches between attributes
in two schemas. Feedback has also been proposed as a means for driving the
specification of schema mappings. For example Jeffery, et al. [30] developed a
decision-theoretic framework for specifying the order in which candidate map-
pings can be confirmed by soliciting feedback from users with the objective of
providing the most benefit to a dataspace. To do so, they developed a utility
function that estimates the benefit that can be drawn from knowing whether a
given schema mapping is correct or not.

User feedback has also been used as a means for authoring integration queries,
i.e., queries that involve multiple data sources. The Q system supports such a
functionality [48]. Specifically, given a set of keywords specified by the user,
the system suggests a list of candidate queries that may or may not meet user
expectations. The user comments on the results returned by those queries. Based
on these comments, the system ranks the list of candidate queries, the first query
being the one that seems to meet user expectations the most.

While the above proposals show the key role user feedback can play to support
data integration, they are confined to the use of feedback to support a single
functionality. Differently, in our work, we try to make the most of the feedback
supplied by end users, and use them to support three functionalities that are key
to dataspaces improvement, viz., mapping annotation, selection and refinement.

12

Dataspace Layer

Connectivity Layer

S
e
rv
ic
e
 L
a
y
e
r

Model Management

Operators

Initialisation

Match

InferCorrespondence

Merge

Diff Compose

Query Evaluation

Operators

Mapping annotation and

selection Operators

ViewGen

Usage Improvement

Presentation Layer

Parser

Validator

Global Translator

Expander

Optimiser

Localiser

Evaluator

Select mappings

Annotate mappings

Refine mappings

Fig. 6. Layered architecture of DSToolkit.

4 The DSToolkit Architecture

This section provides an overview of the architecture of DSToolkit. It is imple-
mented following the layered architecture shown in Figure 6. The arrows between
the operators indicate in which order they tend to be utilised in each phase of
the life cycle of a dataspace, namely, initialisation, usage and improvement. The
arrows also indicate the dependency of the operators on the output of a previous
operator producing the input of another operator, e.g., during initialisation the
operator inferCorrespondence uses the output of match, i.e., the matches pro-
duced, as input to infer the schematic correspondences which, in turn are used
by merge as input along with the schemas to be merged.

DSToolkit consists of a dataspace layer that persistently stores the model-
generic representation of schemas, the morphisms between them, i.e., the matches,
schematic correspondences supported by the matches, and the mappings derived
from the latter, queries posed, the corresponding results as well as user feedback
gathered on the results. The UML diagram of the model-generic representation
of schemas is shown in Figure 7 and introduced in Section 5.1. The UML diagram
of the morphism model is shown in Figure 8 and discussed in Section 5.2.

The connectivity layer provides the means for storing the information rep-
resented in the dataspace layer persistently and for accessing that information.
As the functionality provided by this layer is fairly straightforward, it is omitted
from further discussion. The connectivity layer is used in turn by the service
layer which contains the actual functionality of DSToolkit, namely the model
management operators, the query processor, and the techniques for mapping
annotation, selection and refinement based on user feedback provided on result
tuples. The functionality provided for use during the initialisation and usage
phase is discussed in more detail in Section 5, whereas the functionality pro-
vided for use during the improvement phase is introduced in Section 6. The
presentation layer exposes a web-based user interface through which the user
can access the functionality provided by DSToolkit, i.e., the operators provided
by the service layer and introduced in the following.

13

id : String
type : String

Model

id : long
name : String

Schema

name : String
description : String
driverClass : String
connectionURL : String
schemaURL : String
userName : String
password : String

DataSource

id : long
name : String

CanonicalModelConstruct

superAbstractType : String
SuperAbstract

dataType : String
isIdentifier : boolean
superLexicalType : String

SuperLexical
superRelationshipType : String

SuperRelationship

role : String
ParticipationInSuperRelationship

1 1

1

0..*

1 0..*

0..*

0..*

0..*

1

0..*

1

0..10..*0..*0..1

Fig. 7. UML Diagram of the canonical model.

5 Initialising, Shaping and Querying a Dataspace with
DSToolkit

This section describes how a dataspace is set-up. More specifically, it describes
the initialisation of a dataspace, how data sources can be added, integration
schemas inferred that match the user’s view of the data and how queries can
be posed and are evaluated. The section introduces the models required to
capture all the necessary information, and the operators, some of which are
model management operators, some of which we have added for the dataspace
management. The operators provided by DSToolkit (except addDataSource and
evaluateQuery) with their signatures and descriptions are listed in Table 3.

5.1 Model-generic Canonical Model

This section presents the model-generic metamodel, called the canonical model,
which is a generalisation of the MISM supermodel [1, 2] and is shown in Figure
7. MISM consists of two levels of schema descriptions, namely, the model-specific
description and the source-model independent supermodel. The model-specific
descriptions contain all the constructs that are required to represent schemas
in a particular model, e.g., table, column and foreign key for relational models
and root element, complex element, simple element and foreign key for XSD.
The supermodel contains a small set of model-generic constructs that represent
the model-specific constructs by aggregating over their similarities, e.g., whether
they can have values as is the case for relational and object-relational columns,
simple elements in XSD and object fields, all of which correspond to lexical in the
MISM model, or whether a construct represents referential integrity constraints
between other constructs, such as the foreign key in XSD, relational and object-
relational, all of which correspond to foreign key in MISM.

We have generalised the constructs of the MISM supermodel further ac-
cording to whether the constructs can have values, represented by SuperLexical,
e.g., column of a relational table, or a simple element in XSD, whether they
are collection objects, represented by SuperAbstract, e.g., a relational table, or
a complex element in XSD, or whether they represent a relationship between
constructs, represented by SuperRelationship, e.g., a foreign key relationship in

14

Table 2. Canonical model constructs, model-generic and model-specific constructs.

Model-specific constructs per model
Canonical MISM Relational XSD Object Object
model model-generic Relational
constructs constructs
Super- Abstract Root element Class Typed table
Abstract Aggregation Table Table

StructOfAttributes Complex Structured
element column

Super- Lexical Column Simple Field Column
Lexical element
Super- Foreign key Foreign key Foreign key Foreign key
Relationship Abstract attribute Reference field Reference

Generalisation Generalisation Generalisation

relational model or XSD, or the nesting of elements in XSD. Table 2 lists the
constructs of our canonical model, the corresponding model-generic constructs
of the MISM model and the corresponding model-specific constructs for rela-
tional, XSD, object and object-relational models. In addition to the example
schemas shown in Figure 1, the figure also shows the corresponding construct in
the canonical model, i.e., SuperAbstract for the relational tables in s1 and s2,
as well as the root element (country) and the complex elements (language) in
s3. The relational columns in s1 and s2 and the simple elements in s3 all cor-
respond to SuperLexical, but for readability not all those correspondences are
shown in Figure 1. Even though DSToolkit currently provides no importers for
object and object-relational schemas (which can easily be added), as the canon-
ical model is a generalisation of the MISM metamodel, providing support for
object and object-relational schemas, our model supports both too. The exact
type of each canonical model construct, e.g., whether a SuperAbstract represents
a relational table or an XSD complex element or whether a SuperRelationship
represents a relational or an XSD foreign key, is captured by the corresponding
type (superAbstractType, superLexicalType, superRelationshipType in Fig. 7) as
this information is later required for query rewriting (see Section 5.3). Super-
Abstracts participating in a SuperRelationship can play different roles, e.g., the
nested child element or its parent element, the referenced element in a foreign
key relationship or the referencing element. Some relationships are also further
specified by SuperLexicals, e.g., the attributes that form the (composite) foreign
key. This information is captured in ParticipationInSuperRelationship.

When a data source di with its schema si is added using the operator (di,si)
←addDataSource(dataSourceName, description, driverClass, url, userName,
password) for data sources where the schema information can be obtained
from the same url as the data or (di,si)←addDataSource(dataSourceName,
description,driverClass,url,schemaUrl,userName,password) for data sources
where the schema information can be found in a different location to the data
source itself, the schema information is imported according to the correspondence
between the model-specific constructs and the canonical model constructs. All
the remaining operators operate over the representation of schemas in the canon-
ical model, thereby abstracting over the differences of heterogeneous models.

15
Table 3. Operators provided by DSToolkit

Operation Signature Description
match A← match(si, sj , [di, dj]) Match schemas si and sj with each other using

schema-based and if instances from data sources
di and dj with schemas si and sj are provided,
instance-based matchers to obtain set A of matches
between them.

infer C ← Generate set of schematic correspondences C from
Correspondences inferCorrespondences(A) set of matches A.
compose C ← compose(C1, C2) Compose sets of schematic correspondences C1, C2

that hold between si, sj and sj , sk into correspon-
dences C that hold between si, sk.

merge (sm, C1, C2) ← Merge two schemas si and sj using the schematic
merge(si, sj , C) correspondences C that hold between them and re-

turn merged schema sm with correspondences C1

and C2 that hold between sm, si and sm, sj .
difference C′ ← difference(si, sj , C) Return schematic correspondences C′ that represent

differences between schemas si and sj .
viewGen M ← viewGen(C) Derive set of mappings M from set of schematic cor-

respondences C.
selectMappings M ′ ← selectMappings(Given a set of mappings M and a precision- or recall

M , precisionTarget, recall-
Target)

target λ select mappings M ′ ⊆ M to be used to an-
swer a query such that union of results returned by
selected mappings M ′ achieve λ.

refineMappings M ′ ← refineMappings(M) Given set of mappings M produce mappings M ′ that
meet user’s requirements with respect to feedback
provided on results better than M .

Morphism
id : long
name : String

CanonicalModelConstruct

score : double
Match

type : String
score : double

SchematicCorrespondence
queryString1 : String
queryString2 : String

Mapping
name : String
value : String

Parameter

0..*1..*

0..*1..*

source

target

0..*

Fig. 8. UML Diagram of the morphism model.

5.2 The Bootstrapping Process and the Morphisms Generated

Here we present the bootstrapping process with the operators to generate the
various morphisms expressing relationships between heterogeneous schemas and
the models to capture them. The steps required to determine the morphisms
between schemas, merge the schemas and generate mappings that specify how
the data needs to be transformed are explained in more detail in the following.

We also introduce multiple specialised kinds of morphisms, which were pre-
sented in Rondo [39]. A Morphism in general represents a binary relationship
between two sets of instances of constructs. We distinguish between three kinds of
morphisms of varying semantic richness, which we introduce in more detail in the
following. A UML diagram of the different kinds of morphisms with their specific
properties, their generalisation and their associations with CanonicalModelCon-
structs is shown in Figure 8.

Match and Infer Schematic Correspondences between Schemas. To be
able to evaluate queries across multiple data sources, the relationships between
the constructs in their schemas need to be identified and expressed in a way
that can be utilised for unfolding queries posed over a schema of choice. To

16

identify those relationships, firstly, the schemas need to be matched. A match a
is a bidirectional morphism between sets of constructs which indicates that the
constructs are similar to a certain extent; the confidence in which is indicated by
the (similarity) score property of the match a, whereby a higher score indicates
more confidence. A large corpus of literature is available on various matching
approaches and algorithms (e.g., see [43, 17]). To identify the set A of matches
between two schemas si and sj the operator A ← match(si, sj , [di, dj]) can be
used, which uses existing schema-, and if optional instance data is available from
data sources di and dj , instance-based matchers [16, 41, 3]. Examples of matchers
include string based matchers using, e.g., edit distance or n-grams to determine
how similar two strings are, data type matchers comparing the data types of
constructs, or structure-based matchers comparing the structure of constructs
within a schema such as the nesting of elements in XSD. The computational
complexity of schema matchers is generally O(n2) [9].

However, these matches do not provide sufficient information for deriving
mappings that express how data is to be transformed. To bridge the semantic
gap between semantically poor matches and semantically rich mappings and to
enable the automatic generation of mappings from matches, we use schematic
correspondences, which are based on schematic heterogeneities introduced in
[33, 32] and which, as shown in [36], provide enough information to infer the
mappings automatically. The operation C ← inferCorrespondences(A) is used
to infer a set of semantically rich schematic correspondences C from the set of
matches A. A schematic correspondence has a score, which as before for matches
indicates the confidence associated with the correspondence. Only a subset of the
matches A provided as input may result in schematic correspondences, i.e., only
those matches that provide the most support for schematic correspondences of
the following types: different name for same construct (DNSC), same name for
same construct (SNSC), missing constructs (MC), horizontal - (HP) and vertical
partitioning (VP). For example, in Figure 2 matches between city.population

in s1 and countries.population in s2 and vice versa have been identified.
However, as can be seen in Figure 3 these have not resulted in a schematic
correspondence between these elements, as other matches have provided more
evidence for correspondences between city in s1 and cities in s2 as well as
country in s1 and countries in s2 and their corresponding attributes rather
than between the population attribute in city and country.

The type of a schematic correspondence is captured in its property type. Some
correspondences require additional parameters, e.g., for VP the join predicates,
which are captured in the Parameters that can be associated with a correspon-
dence (Fig. 8). A genetic algorithm is used to search the space of all possible
schematic correspondences supported by the input matches and find an optimal
solution, the runtime of which can be controlled by various parameters, such as
population size and number of generations [40].

Model Management Operations for Manipulating Schemas and Corre-
spondences. Once schematic correspondences between constructs in schemas

17

Schema s5:

continent(name, area)

encompasses(country, continent, percentage)

Fig. 9. Schema s5

have been identified, those and the schemas can be manipulated using model
management operators [7, 8]. Model management operators have been shown to
be useful for various scenarios that are of importance in data integration, such
as schema integration and evolving schemas [6]. In addition to match DSToolkit
provides implementations of (sm, C1, C2)← merge(si, sj , C), which merges two
schemas si and sj utilising the schematic correspondences C that hold between si
and sj and returns the merged schema sm with sets of schematic correspondences
C1 and C2 that hold between sm, si and sm, sj , respectively, C ← compose(C1,
C2) which composes sets of schematic correspondences C1, C2 that hold be-
tween si, sj and sj , sk, respectively, into schematic correspondences C that hold
between si, sk and C ′ ← difference(si, sj , C), which returns schematic cor-
respondences C ′ that represent the differences between the two schemas si and
sj . Differences can include missing constructs or different names for the same
constructs. The computational complexity of the operators is O(n2).

Model management operators provide flexibility for creating merged schemas
that meet the user’s requirements by merging multiple schemas and composing
schematic correspondences, or to choose any of the source schemas and gener-
ate schematic correspondences between the selected schema(s) and all the other
source schemas. For example, assume that the user who created the merged
schema sm2

shown in Figure 4 by matching all the source schemas with each
other, inferring schematic correspondences between them and creating the merged
schema sm2 would also like to get information on the continents the countries are
located in. The user has found another relational data source d5 with the schema
s5 shown in Figure 9. As the user is aware that matching s5 against the inte-
gration schema sm2

might miss the association between sm2
.country.code and

s5.encompasses.country due to the different names of the attributes and the
lack of instances for sm2

he decides to match s5 with s1 making use of instance
data and infers the schematic correspondences between them, but he could have
chosen any of the other source schemas. The results of A5 ← match(s1, s5, d1,
d5) and Cs1−s5 ← inferCorrespondences(A5) are shown in Figure 10.

To be able to merge sm2
with s5 the correspondences between the two

schemas are needed, which can be obtained by composing the correspondences
between sm2

, s1 and s1, s5: Csm2−s5 ← compose(Csm2−s1 , Cs1−s5). These corre-
spondences are then used for merging sm2 with s5 to create sm3 : (sm3 , Cm3−sm2

,
Csm3

−s5) ← merge(sm2 , s5, Csm2
−s5). Compose is then used to generate the

schematic correspondences between the newly merged schema s5 and all the
other source schemas by composing the correspondences between sm3

, sm2
and

those between sm2
and each of the source schemas s1, s2 and s3, respectively. If

the user decides that one of the source schemas is actually the preferred schema
to pose queries over, s5 could be matched with the remaining schemas s2 and

18

Matches between s1 and s5:

<{s1.country.name}, {s5.continent.name}, 0.5>

<{s1.country.area}, {s5.continent.area}, 0.8>

<{s1.country}, {s5.continent}, 0.4>

<{s1.city.name}, {s5.continent.name}, 0.5>

<{s1.country.code}, {s5.encompasses.country}, 0.55>

<{s1.city.country}, {s5.encompasses.country}, 0.67>

Schematic correspondences between s1 and s5:

<{s1.country}, {s5.continent}, different name same construct, 0.3>

<{s1.country.name}, {s5.continent.name}, same name same construct, 0.5>

<{s1.country.area}, {s5.continent.area}, same name same construct, 0.8>

<{s1.country.code}, {s5.continent}, missing attribute, 0.9>

...

<{s1.country.population}, {s5.continent}, missing attribute, 0.9>

<{s1.country.code}, {s5.encompasses.country}, different name same construct, 0.55>

<{s1.city.country}, {s5.encompasses.country}, same name same construct, 0.67>

Fig. 10. Matches and schematic correspondences between s1 and s5.

s3 and the correspondences inferred from the matches returned. The resulting
correspondences would be similar to those shown in Figure 10. Using the model
management operators as illustrated in Section 2 and here, the user has gener-
ated a number of schemas and a number of sets of schematic correspondences.

ViewGen and the Resulting Mappings. As shown in [36] the schematic
correspondences provide enough information to generate mappings automati-
cally using the operator M ← viewGen(C), which generates mappings M that
correspond to the schematic correspondences C. The mappings are executable
expressions that specify in form of two query strings, the specific properties of
a mapping, how data that conforms to one schema has to be transformed to
conform to another schema. The operator can be applied to any schematic cor-
respondences between any two schemas (source- or merged integration schemas),
allowing users to choose their favourite schema to pose queries over.

Iterating over the schematic correspondences the corresponding view between
the participating source- and target-SuperAbstracts is generated. Depending on
the cardinality of the participating SuperAbstracts, and more specifically on
the kind of schematic correspondence, different approaches are used to gener-
ate the executable mapping. For example, in the case of one-to-one schematic
correspondences, such as same name for same construct or different name for
same construct, the view for populating the single target SuperAbstract from
the single source SuperAbstract is generated with additional renaming applied
in the case of the latter schematic correspondence. In the case of a one-to-many
schematic correspondence, e.g., horizontal partitioning or vertical partitioning,
the executable mapping for populating the single target SuperAbstract from the
multiple source SuperAbstracts is generated by applying the union in the former
case or by applying the join on the key attributes that are present in all vertically

19

Table 4. CMql algebra.

Operator
SCAN(SuperAbstract, Predicate) → Collection
REDUCE(Collection, {SuperLexical}) → Collection
JOIN(Left Collection, Right Collection, Predicate) → Collection
UNION(Left Collection, Right Collection) → Collection
EvaluateSQL(dataSource , SQLqueryString, Predicate, {resultTuple})→ {resultTuple}
EvaluateXQuery(dataSource , XQueryString, Predicate, {resultTuple})→ {resultTuple}

partitioned SuperAbstracts in the latter case. The computational complexity of
the algorithm presented in [36] is O(n).

5.3 Using the Dataspace: Evaluate Query

This section provides a brief overview of the expansion of queries posed over a
schema represented in the canonical model into queries over potentially multiple
sources, the translation of the source-specific sub-queries into the source-model-
specific query languages and their evaluation [28].

We have defined CMql, a declarative query language inspired by SQL but
defined over the constructs of the canonical model introduced in Section 5.1. A
CMql query has the following form: SELECT sl1, ..., sln FROM sa1, ..., sam WHERE p,
where sl1,...,sln is a project list of SuperLexicals, sa1,...,sam is a list of SuperAb-
stracts, and p is a conjunctive predicate. Queries can be posed over any schema,
be it schemas of imported sources, global schemas generated using merge, or a
manually specified global schema.

CMql queries are parsed, validated, translated into the algebra shown in
Table 4 following standard translation schemes [20] during which selection pred-
icates are pushed down into the SCAN operator, expanded, optimised, source-
specific subqueries rewritten into the source-specific query languages and the
query is evaluated with subqueries being sent to the query evaluator of the cor-
responding sources to be evaluated locally. The query processor consisting of
components for each of those tasks (shown in Figure 6 - the components un-
der Query Evaluation) is an extended version of the OGSA-DQP distributed
query processor [34] which has been adapted for the models used in DSToolkit.
The UNION operator is used in the context of query unfolding whereas Evalu-
ateSQL and EvaluateXQuery are used to evaluate the source-specific subqueries
that have been rewritten into the source-model-specific query languages. Queries
are expanded using query unfolding [24] with the mappings between the schema
over which the query is posed and any of the schemas of the sources over which
the query is to be evaluated. For expansion, either all the appropriate mappings
generated by viewGen can be used or a subset of the mappings can be selected
using the operator selectMappings which is explained in more detail in Section
6. The expanded queries are optimised, and subqueries of the optimised query
plan that are associated with specific sources are translated into the source-
specific query languages. The translated subqueries are passed to EvaluateSQL
and EvaluateXQuery with information on the source over which the subquery
is to be evaluated, i.e., which local query evaluator is to evaluate the subquery.

20

Both operators can be parameterised with a predicate and result tuples, e.g.,
in the case of joins between two different sources. The query evaluator follows
the iterator model [21], whereby each operator returns one result tuple at a
time which can then be processed by the subsequent query operators, thereby
removing the need to wait for a query operator to finish. A result tuple consists
of multiple result values which in turn consist of a name of the corresponding
superLexical and the actual value.

As mentioned earlier, DSToolkit not only allows multiple global schemas to
co-exist, but also enables the user to pose queries over any schema of their choice,
be it a merged schema, any of the source schemas or a manually provided schema
that represents the user’s preferred view of the data. For example, assume a user
of data source d1 would like to pose the following query q3 over the dataspace:

SELECT c.name, c.population, c.longitude, c.latitude, o.name, o.population

FROM city c, country o

WHERE c.country = o.code

AND o.population > 100000000

AND c.population > 5000000.

However, s/he would like to pose the query over the schema s1 of d1 rather
than any of the merged schemas, but would like the query to be evaluated
not just over d1, but also over d2, which are the two data sources containing
information on countries and their cities. The query is translated into the CMql
algebra, expanded using query unfolding and the mappings between city and
country in s1 and s2, which are similar to mappings map1 and map2 in Figure
5, optimised and the source-specific subqueries are rewritten. The operator tree
of the expanded query is shown in Figure 11 and the resulting query with the
source-specific queries rewritten is shown in Figure 12.

We now assume that a different user of the same dataspace would like to
pose the query q4 shown in Figure 13 over the merged schema sm3 and would
like the query to be evaluated over all the sources that contain the relevant
information on cities in countries in which spanish is spoken and the continent
the country is located in. The query tree corresponding to q3 is shown in Figure
14. In the figure the mappings that can be used to expand the query are also
listed where mappings map1m3

, ..., map6m3
are the mappings between sm3 and

each of the source schemas s1, s2, and s3 and are comparable to the mappings
with the corresponding names map1, ..., map6 shown in Figure 5. The remaining
mappings between s5 and sm3

are shown in Figure 15.
Without any indication of which mappings should be used in cases where

there are multiple mappings suitable to populate a particular construct, the
query is expanded by creating the union of the query in which the constructs
over which the query is posed are populated by each combination of the suitable
mappings. As there are six different ways of combining available mappings the
expanded query is rather large. For this reason, we only show the part of the
query that has been expanded using mapping map6m3

for language, map1m3
for

country, map10m3
for encompasses and map4m3

for city. The resulting part of
the expanded and rewritten query is shown in Figure 16.

21

UNION

REDUCE(c.name, c.population,

c.longitude, c.latitude,

o.name, o.population)

JOIN(c.country

= o.code)

SCAN(city c,

c.population > 5000000)

SCAN(country o,

o.population > 1000000000)

REDUCE(c.name, c.population,

l.longitude, l.latitude,

o.name, o.population)

JOIN(c.country

= o.code)

SCAN(city c,

c.population > 5000000)

SCAN(country o,

o.population > 1000000000)

JOIN(c.name = l.city

AND c.country =

l.country)

SCAN(location l, null)

Fig. 11. Expanded query algebra tree of query q3.

UNION(
EvaluateSQL(d1,

SELECT c.name, c.population, c.longitude, c.latitude, o.name, o.population
FROM city c, country o
WHERE c.country = o.code

AND o.population > 100000000 AND c.population > 5000000, null, null),
EvaluateSQL(d2,

SELECT c.name, c.population, l.longitude, l.latitude, o.name, o.population
FROM city c, location l, country o
WHERE c.name = l.city AND c.country = l.country

AND c.country = o.code
AND o.population > 100000000 AND c.population > 5000000, null, null))

Fig. 12. Expanded and rewritten query q3

SELECT c.name, c.population, c.longitude, c.latitude, o.name, e.continent, l.name
FROM city c, country o, encompasses e, language l
WHERE c.country = o.code

AND o.code = e.country
AND o.code = l.country
AND l.name = "spanish"

Fig. 13. Query q4.

REDUCE(c.name, c.population,

c.longitude, c.latitude,

o.name, e.continent, l.name)

JOIN(o.code =

l.country)

SCAN(country o,

null)

SCAN(language l,

l.name = "spanish")

JOIN(o.code =

e.country)

SCAN(encompasses e,

null)

JOIN(o.code =

c.country)

SCAN(city c, null)

map6m3

map1m3

map3m3

map5m3

map8m3

map2m3

map4m3

Fig. 14. Query algebra tree of query q4.

map9m3
= <sm3

.continent, select c.name, c.area from s5.continent c>

map10m3
= <sm3

.encompasses, select e.country, e.continent, e.percentage from s5.encompasses e

Fig. 15. Mappings between sm3 and s5

22

...
UNION(...,

REDUCE(
JOIN(

JOIN(
JOIN(

EvaluateXQuery(d3,
<result>

let $s3 := doc(”...”)
for $l in $s3/country/language
where $l/name = ”spanish”
return

<tuple>
<l.country>{fn:data($l/country)}</l.country>
<l.name>{fn:data($l/language name)}</l.name>
<l.percentage>{fn:data($l/percentage)}</l.percentage>

</tuple>
</result>, null, null),

EvaluateSQL(d1,
SELECT o.name, o.code, o.capital, o.area, o.population
FROM country o, null, null),

o.code = l.country),
EvaluateSQL(d5,

SELECT e.country, e.continent, e.percentage
FROM encompasses e, null, null),

o.code = e.country),
EvaluateSQL(d2,

SELECT c.name, c.country, c.population, l.longitude, l.latitude
FROM cities c, location l
WHERE c.name = l.city AND c.country = l.country

AND l.name = ”spanish”, null, null),
o.code = c.country),

{c.name, c.population, c.longitude, c.latitude, o.name, e.continent, l.name}))

Fig. 16. Expanded and rewritten partial query q4

6 Improving Dataspace Using User Feedback on Results

Without the knowledge of which mappings meet the user’s requirements or in-
tentions the closest, queries have to be expanded using the combination of all
potential mappings. As illustrated in the previous section this can lead to rather
complex queries that are evaluated over numerous sources, some of which may
not contain any of the data the user is actually interested in. Also, not all combi-
nations of mappings may return results that the user would like to see. However,
rather than ask the user to provide feedback on the mappings themselves as in
[11, 10] or alter them to meet their needs, both of which requires a good un-
derstanding of schemas and mappings, thereby excluding the casual user, we
ask the user to provide feedback on result tuples returned by the queries s/he
has posed. This section describes the user feedback gathered and its application
for annotating mappings, selecting and refining them to improve the integra-
tion over time [4]. This section also illustrates how previously gathered feedback
can be utilised to evaluate the perceived quality of new complementary data
sources with respect to the feedback previously provided, i.e., to evaluate how
well a new data source matches the expectations of the user without requiring
additional feedback from the user. The feedback can also be utilised along with
new mappings over new sources for selection and refinement of mappings over
already integrated sources. In contrast, rather than reusing previously provided

23

Table 5. Precision and recall of map1, map3 and map5 based on user feedback in
Table 1.

Mapping Precision Recall
map1 1 1
map3 0 0
map5 0.5 1

feedback to gain information on new data sources, in [47] users need to provide
feedback on the results returned by queries evaluated over the new sources.

Users can provide feedback on query result tuples of their own choosing
indicating whether they expected a particular tuple that was returned to be
present, i.e., a true positive (TP), or whether the tuple was not expected to be
returned, i.e., a false positive (FP). Furthermore, users can also provide result
tuples that were not returned, but that they expected to be part of the query
result, i.e., false negatives (FN). It is worth mentioning that a true positive
tuple of a given mapping may be a false negative tuple for another mapping. To
illustrate this, consider that the user specifies that the tuple t is expected. The
tuple t is a true positive for a given mapping m if m returns t, and is a false
negative, otherwise. The feedback provides partial information on the extent
of the construct in the schema over which the query was posed. This (partial)
information can be used to calculate the precision and recall of the mappings that
were used to produce those annotated results. Precision and recall are calculated
as follows:

Precision(m,UF) =
|TP (m,UF)|

|TP (m,UF)|+ |FP (m,UF)|
(1)

Recall(m,UF) =
|TP (m,UF)|

|TP (m,UF)|+ |FN(m,UF)|
(2)

where |TP (m,UF)|, |FP (m,UF), |FN(m,UF)| denote, respectively, the number
of TPs, FPs and FNs returned by a mapping m according to the user feedback
UF on query results involving the mapping m.

For example, returning to the user feedback provided on result tuples to
query q1 shown earlier in Table 1, this user feedback is utilised to annotate
the mappings map1, map3 and map5 with their respective precision and recall
computed by Equations 1 and 2, respectively. The results are shown in Table 5.
Another option for annotating the mappings would be the use of gold-standard
ground truth data, if available, rather than asking the user for feedback. This
option, however, is not discussed here.

6.1 Improving Mappings and their Selection for Query Re-runs

The user feedback is not only used to annotate the mappings with their respective
precision and recall based on the user feedback gathered. It can also be used
to select the mappings that meet the user’s requirements for future re-runs of
queries and to generate better mappings with respect to the user’s expectations
using refinement. Both are explained in more detail in the following.

24

Mapping Selection. Using all candidate mappings to answer a user query may
have undesirable consequences. In particular, there is a risk that the query will
take a long time to be evaluated, if the number of candidate mappings is large,
and that the resulting tuples are largely false positives, if the mappings are of
poor quality. To overcome this issue, we implemented an operation that selects
the mappings to be used to evaluate a user query. Not all users have the same
requirements as to the completeness and soundness of the results. Because of this,
the selection operation we developed provides the user with a means to specify
his requirements with respect to results soundness, by specifying a threshold for
precision, or to the completeness, by specifying a recall threshold. Specifically,
given a set of candidate mappings M and a precision- or recall target λ set by
the user, the M ′ ← selectMappings(M , precisionTarget, recallTarget) operator
selects the mappings M ′ ⊆M that are to be used to answer the query such that
the union of query results returned by the selected mappings M ′ achieve λ.
The problem is formulated as a constrained optimisation problem in which the
selected target λ (say precision) is the constraint and the other value (say recall)
is maximised and is solved using tabu search [40].

For an example, we revisit the user feedback provided on results of query q1

in Table 1 and the resulting precision and recall of the corresponding mappings
shown in Table 5. If the user chooses a desired precision target 0.5 < λ ≤ 1,
only mapping map1 would be used to answer the query, whereas for a precision
target 0 < λ ≤ 0.5 both mappings map1 and map5 would be used. The recall of
the mappings is either 1 or 0, so any recall target of 0 < λ ≤ 1 would exclude
mapping map3 from being utilised.

Mapping selection cannot only be used to exclude mappings that are correct
in the sense that they associate the correct constructs with each other but do not
meet the user’s requirements with respect to the results they return, e.g., all three
mappings map1, map3 and map3 associate the construct representing countries
in sm2

with the constructs representing countries in the corresponding source
schemas, however, not all the results returned meet the (subjective) expectation
of the user. It can also be used to exclude incorrect mappings, which could be
produced by the automatic bootstrapping process. For example, lets assume we
have an additional data source d6 with the following schema s6:

province(name, country, capital, area, population)

Using the automatic bootstrapping process, the following incorrect mapping
map11 could have been produced, associating incorrectly the construct repre-
senting countries in sm3

with the construct representing province in s6:

map11 = < sm3 .country, select p.name, p.country as code, p.capital, p.area, p.population
from s6.province p>

which would return information on provinces rather than countries. After the
user has annotated some results returned by this mapping as false positives and
chosen a precision target of 0 < λ this mapping is excluded from further query

25

map12 = <sm2 .country,
select name, code, capital, area, population
from (

(select o.name, o.code, o.capital, o.area, o.population
from s1.country o)

union
(select o.name, o.code, o.capital, o.area, o.population
from s2.countries o)

)>

Fig. 17. Mapping map12 created by refinement.

expansions. Gathering feedback only on result tuples which contain the data the
user is familiar with rather than mappings enables casual users to improve the
dataspace themselves rather than having to rely on developers who have a good
understanding of both schemas and mappings.

Mapping Refinement. Mapping selection can only be successful in returning
exactly the query results the user expects if the mappings meet the user’s require-
ments. However, this may not be the case, e.g., as mentioned earlier d1 contains
information on european and d2 information on african cities and countries, i.e.,
they form a horizontal partitioning. This, however, was not detected during the
bootstrapping process as can be seen in the lack of a mapping that creates the
union of the information from both sources (Fig. 5). If a user is interested in
information from both european and african cities and countries, neither of the
mappings between the merged schema and each of the source schemas will fully
meet the requirements, only a union would achieve this.

The operator M ′← refineMappings(M) aims to produce mappings M ′ that
meet the user’s requirements with respect to the feedback provided on result
tuples better than the existing mappings M by trying to increase the number of
true positives and/or reduce the number of false positives [4]. False positives can
be reduced by filtering the results using the operators of the relational algebra
that allow filtering, namely, join, intersection and difference. To increase the
number of true positives union can be used. The space of mappings that can
be generated by creating the join, intersection, difference or union of existing
mappings M is very large. To explore the space, an evolutionary algorithm [40] is
used which creates new mappings from existing mappings by mutating mappings,
i.e., applying join, or combining mappings by applying intersection, difference
or union (for more detail on the approach, see [4]).

Consider for example a user who is interested in information about european
and african countries, and consider the following two candidate mappings:

map1 = <sm2
.country, select o.name, o.code, o.capital, o.area, o.population from s1.country o>

map3 = <sm2 .country, select o.name, o.code, o.capital, o.area, o.population from s2.countries o>

Both these mappings return tuples that are of relevance to the user. The two
mappings, however, do not return the same set of expected tuples. This suggests
an opportunity for increasing the recall by unioning the source queries of the
two mappings. Using our refinement algorithm, we were able to create a new
mapping map12 shown in Figure 17 to increase the recall of the results.

26

6.2 Assessing the Quality of New Data Sources and Improving the
Mappings over Existing Data Sources

As well as applying mapping annotation, selection and refinement to mappings
over already integrated data sources that have been used to expand queries the
user has posed and the results of which the user has annotated, these techniques
can also be used for mappings over new complementary data sources without
requiring additional feedback. When a new data source is integrated such that
mappings are generated that populate constructs in an existing global schema
from the new source, previously executed queries can be re-run automatically
and the tuples returned by the new mappings compared with tuples previously
annotated by the user. When an annotated tuple with the same attribute val-
ues as a result tuple returned from the new source is found, this annotation is
transferred to the new result tuple, thereby annotating tuples that have been
produced using new mappings over the new source without requiring additional
feedback. Once the result tuples returned by the new mappings are annotated,
this information can be used to annotate those new mappings using the process
described earlier in this section. This gives an indication of how well the new
source meets the user’s requirements with respect to the results its corresponding
mappings return and with respect to the user feedback gathered previously.

For an example, we revisit the query q1 of the user who is only interested
in countries that are both european and mediterranean and has provided the
feedback on some of the result tuples as shown in Table 1 indicating his expecta-
tions. Lets further assume that the user added the new data source d4 containing
information on mediterranean countries with the schema s4:

mediterraneanCountry(name, code, capital, area, population)

and that the mapping map7 was generated:

map7 = <sm2 .country,
select m.name, m.code, m.capital, m.area, m.population
from s4.mediterraneanCountry m>

A rerun of query q1 over d4 using map7 to expand the query will return amongst
other tuples all the tuples shown in Table 1 as all the countries listed in the table
and annotated by the user are mediterranean countries. The previously provided
feedback shown in the table is used to annotate map7 with its precision of 0.5
and its recall of 1.

As soon as mappings are annotated with their respective precision and re-
call this information can be utilised for mapping selection and refinement. This
can be done independent of whether the annotation is based on user feedback
provided on result tuples or whether the annotation has been inferred automat-
ically by comparing tuples produced by new mappings with those that the user
annotated previously.

As an example for selection of new mappings based on their automatically
inferred annotation, we consider the mapping map7 with its inferred precision

27

Table 6. Annotated result tuples of q5.

name code capital area population expected not expected mappings
Iceland IS Reykjavik 103000 270292

√
map1

United Kingdom GB London 244820 58489975
√

map1
Belarus BY Minsk 207600 10415973

√
map1

Liechtenstein FL Vaduz 160 31122
√

map1
Germany D Berlin 356910 83536115

√
map1

and recall that are better than those of map3. This new mapping will be selected
along with map1 and map5 for future evaluations of q1 as long as a precision
target λ of 0 < λ ≤ 0.5 or a recall target of 0 < λ ≤ 1 is specified.

As an example for the refinement of existing mappings using information
from new sources, let us assume that a user is interested in european countries
that are located on an island. The user has previously executed the query q5

SELECT * FROM country o posed over sm2
but stipulated that the query should

only be evaluated over d1, as this source contains only information on european
countries, which results in a large number of unexpected results as the majority
of european countries are not located on an island. The user previously provided
the feedback on a small number of result tuples shown in Table 6.

He has managed to find a data source d7 containing information on countries
that are located on islands and information on that island with the schemas s7:

locatedOnIsland(country, island_name, area, longitude, latitude)

During the bootstrapping process the new information has been added to sm2
,

resulting in this schema:

country(name, code, capital, area, population)

city(name, country, population, longitude, latitude)

language(country, name, percentage)

locatedOnIsland(country, island_name, area, longitude, latitude)

with the following mapping to populate locatedOnIsland in the new merged
schema with the information in d7:

map13 = <sm2 .locatedOnIsland,
select l.country, l.island name, l.area, l.longitude, l.latitude
from s7.locatedOnIsland l>

Adding the information from s7 has not resulted in new mappings for information
that was already part of the schema, e.g., country, but during the bootstrapping
process it has been identified by match that locatedOnIsland.country repre-
sents the same information as country.code, namely the abbreviated names of
countries. Using this information and the previously gathered feedback shown in
Table 6 the refinement algorithm creates the following mapping, which joins the
information on countries with the information on which countries are located
on islands, thereby reducing the number of false positives, i.e., the european
countries that are not located on islands.

28

map14 = <sm2 .country,
select o.name, o.code, o.capital, o.area, o.population
from s1.country o, s7.locatedOnIsland l
where o.code = l.country>

Rerunning query q5 using the new mapping map14 to expand the query
returns information on all the countries that are european and are located on an
island, i.e., all the tuples that are expected by the user but none of the tuples that
are not expected as indicated by the feedback in Table 6. This means that map14

is annotated with its precision of 1 and its recall of 1. The mapping map13, which
provides completely new information on islands, cannot be annotated, though,
as the tuples it produces have not been returned by any previously run query
and, therefore, have not been annotated with feedback that can be reused.

7 Conclusions

In this paper, we presented DSToolkit, an architecture for flexible dataspace
management and the first dataspace management system that:

1. Supports the whole lifecycle of a dataspace, namely initialisation, main-
tenance, usage and improvement. For usage, i.e., querying across multiple
data sources, DSToolkit provides the means for structured CMql queries
posed over any schema to be expanded, optimised and for source-specific
sub-queries to be translated into the source-model-specific query language
for evaluation over the data sources, thereby meeting one of the require-
ments for a dataspace management systems [19] and sub-challenge 2.2 in
[25]. DSToolkit enables the user to specify the precision- or recall-target that
the query results should meet, which is part of the requirement identified as
sub-challenge 4.1 in [25]. However, DSToolkit does not provide support for
keyword queries yet nor does it deal with uncertain or inconsistent data.

2. Is based on model management, thereby benefitting from the flexibility pro-
vided by the model management operators for managing heterogeneous mod-
els and associations between them. In the dataspace vision, it was highlighted
that a dataspace management system needs to be able to support multiple
data models and cope with integrated data sources over which it has no
full control [19, 25]. Building on the basis of model management means that
DSToolkit provides support for both, dealing with different data models and
changes in the schemas of the integrated data sources. However, DSToolkit
only provides support for structured data sources, but not unstructured.

3. Enables casual users to improve the integration by providing feedback on
result tuples which is then utilised to annotate, select and refine the mappings
used to expand the queries. DSToolkit benefits from the interaction with the
user, i.e., the feedback provided by the user, by utilising it to determine which
mappings meet the users’ requirements better than others and generating
new mappings with the aim to improve the integration of the data sources.
The need for the analysis of the users’ interaction with the dataspace and

29

the creation of additional relationships between sources or other forms of
improvements of the dataspace was identified as challenge 5 in [25]. DSToolkit
also estimates the quality of the query result in terms of its precision and
recall based on previously gathered user feedback, a point identified as part
of sub-challenge 2.2 in [25].

4. Can utilise the feedback gathered previously to determine the perceived qual-
ity of new data sources with respect to how well the data in the new source
matches the user’s expectations, to select and refine both mappings over
previously integrated source and those over the new sources without requir-
ing additional feedback from the user. In [25] the authors argue that it is
important to reuse the information provided by users as much as possible
(sub-challenge 5.3). DSToolkit reuses previously provided feedback for the
integration of new data sources, therefore, reducing the amount of feedback
the user has to provide.

The presented approach where the data remains in the sources, however, is not
the only option for a dataspace system. The integrated data sets could also be
curated, annotated and/or cleaned, which requires a (modified) copy of the data
sources.

References

1. Atzeni, P., Bellomarini, L., Bugiotti, F., Gianforme, G.: Mism: A platform for
model-independent solutions to model management problems. J. Data Semantics
14, 133–161 (2009)

2. Atzeni, P., Gianforme, G., Cappellari, P.: A universal metamodel and its dictionary.
T. Large-Scale Data- and Knowledge-Centered Systems 1, 38–62 (2009)

3. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with coma++. In: SIGMOD Conference. pp. 906–908 (2005)

4. Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A.A., Hedeler, C.:
Feedback-based annotation, selection and refinement of schema mappings for
dataspaces. In: EDBT. pp. 573–584 (2010)

5. Belhajjame, K., Paton, N.W., Fernandes, A.A.A., Hedeler, C., Embury, S.M.: User
feedback as a first class citizen in information integration systems. In: CIDR. pp.
175–183 (2011)

6. Bernstein, P.A.: Applying model management to classical meta data problems. In:
CIDR. pp. 209–220 (2003)

7. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of com-
plex models. SIGMOD Record 29(4), 55–63 (2000)

8. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: SIGMOD Conference. pp. 1–12 (2007)

9. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema
matching. SIGMOD Record 33(4), 38–43 (2004)

10. Cao, H., Qi, Y., Candan, K.S., Sapino, M.L.: Feedback-driven result ranking and
query refinement for exploring semi-structured data collections. In: EDBT. pp.
3–14 (2010)

11. Chai, X., Vuong, B.Q., Doan, A., Naughton, J.F.: Efficiently incorporating user
feedback into information extraction and integration programs. In: SIGMOD Con-
ference. pp. 87–100 (2009)

30

12. Chiticariu, L., Kolaitis, P.G., Popa, L.: Interactive generation of integrated
schemas. In: SIGMOD Conference. pp. 833–846 (2008)

13. Chiticariu, L., Tan, W.C.: Debugging schema mappings with routes. In: VLDB.
pp. 79–90 (2006)

14. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration
systems. In: SIGMOD. pp. 861–874 (2008)

15. Dittrich, J., Salles, M.A.V., Blunschi, L.: imemex: From search to information
integration and back. IEEE Data Eng. Bull. 32(2), 28–35 (2009)

16. Do, H.H., Rahm, E.: Coma: a system for flexible combination of schema matching
approaches. In: VLDB. pp. 610–621 (2002)

17. Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Inf.
Syst. 32(6), 857–885 (2007)

18. Dong, X., Halevy, A.Y.: A platform for personal information management and
integration. In: CIDR. pp. 119–130 (2005)

19. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

20. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems The Complete
Book. Pearson International Edition, 2nd edn. (2009)

21. Graefe, G.: Encapsulation of parallelism in the volcano query processing system.
In: SIGMOD Conference. pp. 102–111 (1990)

22. Haas, L.M.: Beauty and the beast: The theory and practice of information inte-
gration. In: ICDT. pp. 28–43 (2007)

23. Haas, L., Lin, E., Roth, M.: Data integration through database federation. IBM
SYSTEMS JOURNAL 41(4), 578–596 (2002)

24. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4),
270–294 (2001)

25. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In: PODS.
pp. 1–9 (2006)

26. Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.: Di-
mensions of dataspaces. In: BNCOD. pp. 55–66 (2009)

27. Hedeler, C., Belhajjame, K., Paton, N.W., Campi, A., Fernandes, A.A.A., Embury,
S.M.: Dataspaces. In: SeCO Workshop. pp. 114–134 (2009)

28. Hedeler, C., Paton, N.W.: Utilising the mism model independent schema manage-
ment platform for query evaluation. In: BNCOD (2011)

29. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar,
P.P., Jacob, M., Pereira, F.: The orchestra collaborative data sharing system. SIG-
MOD Record 37(3), 26–32 (2008)

30. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-
pace systems. In: SIGMOD Conference. pp. 847–860 (2008)

31. Kensche, D., Quix, C., Li, X., Li, Y., Jarke, M.: Generic schema mappings for
composition and query answering. Data & Knowledge Engineering (DKE) 68(7),
599–621 (2009)

32. Kim, W., Choi, I., Gala, S.K., Scheevel, M.: On resolving schematic heterogeneity
in multidatabase systems. Distributed and Parallel Databases 1(3), 251–279 (1993)

33. Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase
systems. IEEE Computer 24(12), 12–18 (1991)

34. Lynden, S., Mukherjee, A., Hume, A.C., Fernandes, A.A.A., Paton, N.W., Sakel-
lariou, R., Watson, P.: The design and implementation of OGSA-DQP: A service-
based distributed query processor. Future Generation Comp. Syst. 25(3), 224–236
(2009)

31

35. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.:
Web-scale data integration: You can afford to pay as you go. In: CIDR. pp. 342–350
(2007)

36. Mao, L., Belhajjame, K., Paton, N.W., Fernandes, A.A.A.: Defining and using
schematic correspondences for automatically generating schema mappings. In:
CAiSE. pp. 79–93 (2009)

37. McBrien, P., Poulovassilis, A.: P2p query reformulation over both-as-view data
transformation rules. In: International Conference on Databases, Information Sys-
tems, and Peer-to-Peer computing (DBISP2P). pp. 310–322 (2006)

38. McCann, R., Kramnik, A., Shen, W., Varadarajan, V., Sobulo, O., Doan, A.: In-
tegrating data from disparate sources: A mass collaboration approach. In: ICDE.
pp. 487–488 (2005)

39. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: a programming platform for generic
model management. In: SIGMOD. pp. 193–204 (2003)

40. Michalewicz, Z., Fogel, D.: How to solve it: modern heuristics. Springer (2000)
41. Mork, P., Seligman, L., Rosenthal, A., Korb, J., Wolf, C.: The harmony integration

workbench. J. Data Semantics 11, 65–93 (2008)
42. Naumann, F., Leser, U., Freytag, J.C.: Quality-driven integration of heterogenous

information systems. In: VLDB. pp. 447–458 (1999)
43. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB Journal 10(4), 334–350 (2001)
44. Scannapieco, M., Virgillito, A., Marchetti, C., Mecella, M., Baldoni, R.: The ar-

chitecture: a platform for exchanging and improving data quality in cooperative
information systems. Inf. Syst. 29(7), 551–582 (2004)

45. Seligman, L., Mork, P., Halevy, A.Y., Smith, K.P., Carey, M.J., Chen, K., Wolf,
C., Madhavan, J., Kannan, A., Burdick, D.: Openii: an open source information
integration toolkit. In: SIGMOD Conference. pp. 1057–1060 (2010)

46. Smith, A., Rizopoulos, N., McBrien, P.: Automed model management. In: ER. pp.
542–543 (2008)

47. Talukdar, P.P., Ives, Z.G., Pereira, F.: Automatically incorporating new sources
in keyword search-based data integration. In: SIGMOD Conference. pp. 387–398
(2010)

48. Talukdar, P.P., Jacob, M., Mehmood, M.S., Crammer, K., Ives, Z.G., Pereira, F.,
Guha, S.: Learning to create data-integrating queries. PVLDB 1(1), 785–796 (2008)

49. Wang, R.Y.: A product perspective on total data quality management. Commun.
ACM 41(2), 58–65 (1998)

