Abstract
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A Framework for Clustering Evolving Data Streams. In: Proceedings of the VLDB Conference (2003)
Aggarwal, C.C., Han, J., Wang, J., Yu, P.: On Demand Classification of Data Streams. In: Proceedings of the ACM KDD Conference (2004)
Stahl, F., Gaber, M.M., Bramer, M., Yu, P.S.: Pocket Data Mining: Towards Collaborative Data Mining in Mobile Computing Environments. In: Proceedings of the IEEE 22nd International Conference on Tools with Artificial Intelligence (ICTAI 2010), Arras, France, October 27-29 (2010)
Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.: Journal of Machine Learning Research, JMLR (2010)
Bifet, A., Kirkby, R.: Data Stream Mining: A Practical Approach, Center for Open Source Innovation (August 2009)
Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: A Review. ACM SIGMOD Record 34(1), 18–26 (2005) ISSN: 0163-5808
Zaslavsky, A.: Mobile Agents: Can They Assist with Context Awareness? In: IEEE MDM, Berkeley, California (January 2004)
Page, J., Padovitz, A., Gaber, M.: Mobility in Agents, a Stumbling or a Building Block? In: Proceedings of Second International Conference on Intelligent Computing and Information Systems, Cairo, Egypt, March 5-7 (2005)
da Silva, J., Giannella, C., Bhargava, R., Kargupta, H., Klusch, M.: Distributed Data Mining and Agents. Engineering Applications of Artificial Intelligence Journal 18, 791–807 (2005)
Kargupta, H., Hamzaoglu, I., Stafford, B.: Scalable, Distributed Data Mining Using an Agent-Based Architecture. In: Heckerman, D., Mannila, H., Pregibon, D., Uthurusamy, R. (eds.) Proceedings of Knowledge Discovery and Data Mining, pp. 211–214. AAAI Press (1997)
Pittie, S., Kargupta, H., Park, B.: Dependency Detection in MobiMine: A Systems Perspective. Information Sciences Journal 55(3-4), 227–243 (2003)
Krishnaswamy, S., Loke, S.W., Zaslavsky, A.B.: A hybrid model for improving response time in distributed data mining. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(6), 2466–2479 (2004)
Domingos, P., Hulten, G.: Mining high-speed data streams. In: International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)
Langley, P., Iba, W., Thompson, K.: An analysis of bayesian classifiers. In: National Conference on Artificial Intelligence, pp. 223–228 (1992)
Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, 2nd edn. Morgan Kaufmann (2005)
Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-Agent Systems with JADE. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 89–103. Springer, Heidelberg (2001)
Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases (Technical Report). University of California, Irvine, Department of Information and Computer Sciences (1998)
Bacardit, J., Krasnogor, N.: The Infobiotics, PSP benchmarks repository (2008), http://www.infobiotic.net/PSPbenchmarks
Kargupta, H., Park, B., Pittie, S., Liu, L., Kushraj, D., Sarkar, K.: MobiMine: Monitoring the Stock Market from a PDA. ACM SIGKDD Explorations 3(2), 37–46 (2002)
Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K., Klein, M., Vasa, M., Handy, D.: VEDAS: A Mobile and Distributed Data Stream Mining System for Real-Time Vehicle Monitoring. In: Proceedings of the SIAM International Data Mining Conference, Orlando (2004)
Kargupta, H., Puttagunta, V., Klein, M., Sarkar, K.: On-board Vehicle Data Stream Monitoring using MineFleet and Fast Resource Constrained Monitoring of Correlation Matrices. Next Generation Computing. Invited Submission for Special Issue on Learning from Data Streams 25(1), 5–32 (2007)
Park, B., Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and Applications. In: Ye, N. (ed.) Data Mining Handbook (2002)
Agnik, MineFleet Description, http://www.agnik.com/minefleet.html
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)
Krishnaswamy, S., Gaber, M.M., Harbach, M., Hugues, C., Sinha, A., Gillick, B., Haghighi, P.D., Zaslavsky, A.: Open Mobile Miner: A Toolkit for Mobile Data Stream Mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2009, Paris, France, June 28-1 July (2009) (Demo paper)
BBC, Budget Cuts of Police Force, http://www.bbc.co.uk/news/uk-10639938
Poh, M., Kim, K., Goessling, A.D., Swenson, N.C., Picard, R.W.: Heartphones: Sensor Earphones and Mobile Application for Non-obtrusive Health Monitoring. In: IEEE International Symposium on Wearable Computers, Austria, pp. 153–154 (2009)
Gaber, M.M., Zaslavsky, A.B., Krishnaswamy, S.: Data Stream Mining. In: Data Mining and Knowledge Discovery Handbook 2010, pp. 759–787. Springer, Heidelberg (2010)
Gaber, M.M., Krishnaswamy, S., Zaslavsky, A.: Resource-Aware Mining of Data Streams. Journal of Universal Computer Science 11(8), 1440–1453 (2005) ISSN 0948-695x, Special Issue on Knowledge Discovery in Data Streams, Verlag der Technischen Universit Graz, Know-Center Graz, Austria (August 2005)
Gaber, M.M., Yu, P.S.: A framework for resource-aware knowledge discovery in data streams: a holistic approach with its application to clustering. In: Proceedings of the 2006 ACM Symposium on Applied Computing (SAC), Dijon, France, April 23-27, pp. 649–656. ACM Press (2006)
Gaber, M.M.: Data Stream Mining Using Granularity-Based Approach. In: Foundations of Computational Intelligence, vol. (6), pp. 47–66. Springer, Heidelberg (2009)
Phung, N.D., Gaber, M.M., Ohm, U.R.: Resource-aware online data mining in wireless sensor networks. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2007), April 1-5 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Stahl, F. et al. (2012). Homogeneous and Heterogeneous Distributed Classification for Pocket Data Mining. In: Hameurlain, A., Küng, J., Wagner, R. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems V. Lecture Notes in Computer Science, vol 7100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28148-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-28148-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28147-1
Online ISBN: 978-3-642-28148-8
eBook Packages: Computer ScienceComputer Science (R0)