Abstract
In order to simulate the interaction of seismic waves with cavernous/fractured reservoirs, a finite-difference technique based on locally refined time-and-space grids is used. The need to use these grids is due primarily to the differing scale of heterogeneities in the reference medium and the reservoir. Domain Decomposition methods allow for the separation of the target area into subdomains containing the reference medium (coarse grid) and reservoir (fine grid). Computations for each subdomain can be carried out in parallel. The data exchange between each subdomain within a group is done using MPI through nonblocking iSend/iReceive commands. The data exchange between the two groups is done simultaneously by coupling the coarse and fine grids.
The results of a numerical simulation of a carbonate reservoir are presented and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for 1-D wave equation. Part I: Construction. Numerische Mathematik 95, 197–221 (2003)
Collino, F., Fouquet, T., Joly, P.: A conservative space-time mesh refinement method for 1-D wave equation. Part II: Analysis. Numerische Mathematik 95, 223–251 (2003)
Diaz, J., Grote, M.J.: Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31(3), 1985–2014 (2009)
Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refinement for finite-difference simulation of waves. In: Kreiss, G., Lotstedt, P., Malqvist, A., Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications 2009, Proceedings of ENUMATH 2009, pp. 609–616. Springer, Heidelberg (2010)
Mavko, G., Mukerji, T., Dvorkin, J.: Rock Physics Handbook. Cambridge University Press, Cambridge (2009)
Kristek, J., Moczo, P., Galis, M.: Stable discontinuous staggered grid in the finite-difference modelling of seismic motion. Geophysical Journal International 183(3), 1401–1407 (2010)
Schuster, G.: Seismic interferometry. Cambridge University Press, Cambridge (2009)
Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity - stress finite difference method. Geophysics 51(4), 889–901 (1986)
Willis, M., Burns, D., Rao, R., Minsley, B., Toksoz, N., Vetri, L.: Spatial orientation and distribution of reservoir fractures from scattered seismic energy. Geophysics 71, O43–O51
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V. (2012). Simulation of Seismic Waves Propagation in Multiscale Media: Impact of Cavernous/Fractured Reservoirs. In: Jónasson, K. (eds) Applied Parallel and Scientific Computing. PARA 2010. Lecture Notes in Computer Science, vol 7133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28151-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-28151-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28150-1
Online ISBN: 978-3-642-28151-8
eBook Packages: Computer ScienceComputer Science (R0)