Abstract
The traditional query processing approach, by which queries are executed exactly according to a query execution plan selected before query execution starts, breaks down in heterogeneous and dynamic processing environments that are becoming more and more common as query processing contexts. In such environments, queries are often relaxed and query processing is forced to be adaptive and approximate, either to cope with limited processing resources or with limited data knowledge and data heterogeneity.When approximation and adaptivity are applied in order to cope with limited processing resources, possibly sacrificing result quality, we refer to as Quality of Service (QoS)-oriented techniques. On the other hand, when they are a means to improve the quality of results, in presence of limited data knowledge and data heterogeneity, we refer to as Quality of Data (QoD)-oriented techniques. While both kinds of approximation techniques have been proposed, most adaptive solutions are QoS-oriented. In this chapter, we first survey both kinds of approximation and introduce adaptive query processing techniques; then, we show that techniques which apply a QoD-oriented approximation in a QoD-oriented adaptive way, though demonstrated potentially useful on some examples, are still largely neglected.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The Design of the Borealis Stream Processing Engine. In: CIDR, pp. 277–289 (2005)
Acharya, S., Gibbons, P.B., Poosala, V.: Congressional Samples for Approximate Answering of Group-By Queries. In: SIGMOD Conference, pp. 487–498 (2000)
Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approximate Query Answering. In: SIGMOD Conference, pp. 275–286 (1999)
Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query Results. In: CIDR (2003)
Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region Proximity in Metric Spaces and its Use for Approximate Similarity Search. ACM Trans. Inf. Syst. 21(2), 192–227 (2003)
Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)
Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Content Scoring for XML. In: VLDB, pp. 361–372 (2005)
Arasu, A., Manku, G.S.: Approximate Counts and Quantiles over Sliding Windows. In: PODS, pp. 286–296 (2004)
Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions. J. ACM 45(6), 891–923 (1998)
Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for Data-Centric XML. In: ICDE, pp. 814–823 (2008)
Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: SIGMOD Conference, pp. 261–272 (2000)
Azevedo, L.G., Zimbrão, G., de Souza, J.M.: Approximate Query Processing in Spatial Databases Using Raster Signatures. In: Advances in Geoinformatics, pp. 53–72 (2006)
Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator Scheduling in Data Stream Systems. VLDB J. 13(4), 333–353 (2004)
Babcock, B., Datar, M., Motwani, R.: Sampling From a Moving Window over Streaming Data. In: SODA, pp. 633–634 (2002)
Babcock, B., Datar, M., Motwani, R.: Load Shedding for Aggregation Queries over Data Streams. In: ICDE, pp. 350–361 (2004)
Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: CIDR, pp. 238–249 (2005)
Babu, S., Bizarro, P., DeWitt, D.J.: Proactive Re-optimization. In: SIGMOD Conference, pp. 107–118 (2005)
Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of Pipelined Stream Filters. In: SIGMOD Conference, pp. 407–418 (2004)
Babu, S., Munagala, K., Widom, J., Motwani, R.: Adaptive Caching for Continuous Queries. In: ICDE, pp. 118–129 (2005)
Babu, S., Srivastava, U., Widom, J.: Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries over Data Streams. ACM Trans. Database Syst. 29(3), 545–580 (2004)
Babu, S., Widom, J.: StreaMon: An Adaptive Engine for Stream Query Processing. In: SIGMOD Conference, pp. 931–932 (2004)
Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting Distinct Elements in a Data Stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)
Barbará, D., DuMouchel, W., Faloutsos, C., Haas, P.J., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Johnson, T., Ng, R.T., Poosala, V., Ross, K.A., Sevcik, K.C.: The New Jersey Data Reduction Report. IEEE Data Eng. Bull. 20(4), 3–45 (1997)
Belussi, A., Boucelma, O., Catania, B., Lassoued, Y., Podestà, P.: Towards Similarity-Based Topological Query Languages. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 675–686. Springer, Heidelberg (2006)
Bizarro, P., Babu, S., DeWitt, D.J., Widom, J.: Content-Based Routing: Different Plans for Different Data. In: VLDB, pp. 757–768 (2005)
Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430 (2001)
Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam, S., Stocker, K.: ObjectGlobe: Ubiquitous Query Processing on the Internet. VLDB J. 10(1), 48–71 (2001)
Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data Management Applications. In: VLDB, pp. 215–226 (2002)
Catania, B., Guerrini, G.: Towards Adaptively Approximated Search in Distributed Architectures. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Management 1. Studies in Computational Intelligence, vol. 331, pp. 171–212. Springer, Heidelberg (2011)
Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query Processing using Wavelets. VLDB J. 10(2-3), 199–223 (2001)
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR (2003)
Chaudhuri, S., Das, G., Narasayya, V.R.: Optimized Stratified Sampling for Approximate Query Processing. ACM Trans. Database Syst. 32(2), 9 (2007)
Chaudhuri, S., Ganti, V., Kaushik, R.: A Primitive Operator for Similarity Joins in Data Cleaning. In: ICDE, p. 5 (2006)
Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In: SIGMOD Conference, pp. 379–390 (2000)
Ciaccia, P., Patella, M.: PAC Nearest Neighbor Queries: Approximate and Controlled Search in High-Dimensional and Metric Spaces. In: ICDE, p. 244 (2000)
Considine, J., Hadjieleftheriou, M., Li, F., Byers, J.W., Kollios, G.: Robust Approximate Aggregation in Sensor Data Management Systems. ACM Trans. Database Syst. 34(1) (2009)
Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate Aggregation Techniques for Sensor Databases. In: ICDE, pp. 449–460 (2004)
Cormode, G., Garofalakis, M.N.: Sketching Streams Through the Net: Distributed Approximate Query Tracking. In: VLDB, pp. 13–24 (2005)
Corral, A., Cañadas, J., Vassilakopoulos, M.: Approximate Algorithms for Distance-Based Queries in High-Dimensional Data Spaces Using R-Trees. In: Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 163–176. Springer, Heidelberg (2002)
Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data Streams. In: SIGMOD Conference, pp. 40–51 (2003)
Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc Top-k Query Answering for Data Streams. In: VLDB, pp. 183–194 (2007)
Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining Stream Statistics over Sliding Windows. SIAM J. Comput. 31(6), 1794–1813 (2002)
Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-Driven Data Acquisition in Sensor Networks. In: VLDB, pp. 588–599 (2004)
Deshpande, A., Ives, Z.G., Raman, V.: Adaptive Query Processing. Foundations and Trends in Databases 1(1), 1–140 (2007)
Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A., Lynden, S.J.: Adaptive Join Processing in Pipelined Plans. In: EDBT, pp. 183–194 (2010)
Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: Adaptive Load Shedding for Windowed Stream Joins. In: CIKM, pp. 171–178 (2005)
Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: CPU Load Shedding for Binary Stream Joins. Knowl. Inf. Syst. 13(3), 271–303 (2007)
Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: GrubJoin: An Adaptive, Multi-Way, Windowed Stream Join with Time Correlation-Aware CPU Load Shedding. IEEE Trans. Knowl. Data Eng. 19(10), 1363–1380 (2007)
Gibbons, P.B., Matias, Y.: Synopsis Data Structures for Massive Data Sets. In: Abello, J.M., Vitter, J.S. (eds.) External Memory Algorithms, pp. 39–70. American Mathematical Society (1999)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.: Adaptive Workload Allocation in Query Processing in Autonomous Heterogeneous Environments. Distributed and Parallel Databases 25(3), 125–164 (2009)
Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approximate String Joins in a Database (Almost) for Free. In: VLDB, pp. 491–500 (2001)
Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins. In: SIGMOD Conference, pp. 287–298 (2002)
Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search over XML Documents. In: SIGMOD Conference, pp. 16–27 (2003)
Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conference, pp. 47–57 (1984)
Han, D., Wang, G., Xiao, C., Zhou, R.: Load Shedding for Window Joins over Streams. J. Comput. Sci. Technol. 22(2), 182–189 (2007)
Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adaptive Rank-aware Query Optimization in Relational Databases. ACM Trans. Database Syst. 31(4), 1257–1304 (2006)
Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)
Ioannidis, Y.E., Kang, Y.: Randomized Algorithms for Optimizing Large Join Queries. SIGMOD Rec. 19, 312–321 (1990)
Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric Query Optimization. In: VLDB, pp. 103–114 (1992)
Ioannidis, Y.E., Poosala, V.: Histogram-Based Approximation of Set-Valued Query-Answers. In: VLDB, pp. 174–185 (1999)
Ives, Z.G., Deshpande, A., Raman, V.: Adaptive Query Processing: Why, How, When, and What Next? In: VLDB, pp. 1426–1427 (2007)
Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An Adaptive Query Execution System for Data Integration. In: SIGMOD Conference, pp. 299–310 (1999)
Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data Integration Queries. In: SIGMOD Conference, pp. 395–406 (2004)
Jiao, Y.: Maintaining Stream Statistics over Multiscale Sliding Windows. ACM Trans. Database Syst. 31, 1305–1334 (2006)
Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution Plans. In: SIGMOD Conference, pp. 106–117 (1998)
Kadlag, A., Wanjari, A.V., Freire, J.-L., Haritsa, J.R.: Supporting Exploratory Queries in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004)
Kang, J., Naughton, J.F., Viglas, S.: Evaluating Window Joins over Unbounded Streams. In: ICDE, pp. 341–352 (2003)
Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)
Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for Skyline Queries. In: VLDB, pp. 275–286 (2002)
Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing Join and Selection Queries. In: VLDB, pp. 199–210 (2006)
Koudas, N., Sarawagi, S., Srivastava, D.: Record Linkage: Similarity Measures and Algorithms. In: SIGMOD Conference, pp. 802–803 (2006)
Koudas, N., Srivastava, D.: Approximate Joins: Concepts and Techniques. In: VLDB, p. 1363 (2005)
Kulkarni, D., Ravishankar, C.V.: iJoin: Importance-Aware Join Approximation Over Data Streams. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 541–548. Springer, Heidelberg (2008)
Lee, D.: Query Relaxation for XML Model. Ph.D. thesis. University of California (2002)
Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., Mesiti, M.: Time-completeness Trade-offs in Record Linkage using Adaptive Query Processing. In: EDBT, pp. 851–861 (2009)
Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman, G.M.: Adaptively Reordering Joins during Query Execution. In: ICDE, pp. 26–35 (2007)
Liu, B., Zhu, Y., Jbantova, M., Momberger, B., Rundensteiner, E.A.: A Dynamically Adaptive Distributed System for Processing Complex Continuous Queries. In: VLDB, pp. 1338–1341 (2005)
Liu, H., Wang, X., Yang, Y.: Comments on ”An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams”. ACM Trans. Database Syst. 35(2) (2010)
Liu, X., Dong, X.L., Ooi, B.C., Srivastava, D.: Online Data Fusion. In: VLDB (2011)
Liu, Y., Li, J., Gao, H., Fang, X.: Enabling epsilon-Approximate Querying in Sensor Networks. PVLDB 2(1), 169–180 (2009)
Lu, H., Zhou, Y., Haustad, J.: Continuous Skyline Monitoring Over Distributed Data Streams. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 565–583. Springer, Heidelberg (2010)
Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Continuous Queries over Streams. In: SIGMOD Conference, pp. 49–60 (2002)
Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: VLDB, pp. 346–357 (2002)
Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top-k Queries in XML. In: ICDE, pp. 162–173 (2005)
Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust Query Processing through Progressive Optimization. In: SIGMOD Conference, pp. 659–670 (2004)
Metwally, A., Agrawal, D., Abbadi, A.E.: An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)
Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Approximation, and Resource Management in a Data Stream Management System. In: CIDR (2003)
Mouratidis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Queries over Sliding Windows. In: SIGMOD Conference, pp. 635–646 (2006)
Mozafari, B., Zaniolo, C.: Optimal Load Shedding with Aggregates and Mining Queries. In: ICDE, pp. 76–88 (2010)
Munagala, K., Srivastava, U., Widom, J.: Optimization of Continuous Queries with Shared Expensive Filters. In: PODS, pp. 215–224 (2007)
Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed Data Streams. In: SIGMOD Conference, pp. 563–574 (2003)
Pan, L., Luo, J., Li, J.: Probing Queries in Wireless Sensor Networks. In: ICDCS, pp. 546–553 (2008)
Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins in Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer, Heidelberg (2002)
Papadias, D., Mantzourogiannis, M., Kalnis, P., Mamoulis, N., Ahmad, I.: Content-based Retrieval using Heuristic Search. In: SIGIR, pp. 168–175. ACM, New York (1999)
Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)
Poosala, V., Ganti, V., Ioannidis, Y.E.: Approximate Query Answering using Histograms. IEEE Data Eng. Bull. 22(4), 5–14 (1999)
Raman, V., Deshpande, A., Hellerstein, J.M.: Using State Modules for Adaptive Query Processing. In: ICDE, p. 353 (2003)
Reiss, F., Hellerstein, J.M.: Data Triage: An Adaptive Architecture for Load Shedding in TelegraphCQ. In: VLDB (2004)
Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta, N.: CAPE: Continuous Query Engine with Heterogeneous-Grained Adaptivity. In: VLDB, pp. 1353–1356 (2004)
Rusu, F., Dobra, A.: Sketching Sampled Data Streams. In: ICDE, pp. 381–392 (2009)
Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Fragment-based Approximate Retrieval in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293 (2008)
Sarawagi, S., Kirpal, A.: Efficient Set Joins on Similarity Predicates. In: SIGMOD Conference, pp. 743–754 (2004)
Sarkas, N., Das, G., Koudas, N., Tung, A.K.H.: Categorical Skylines for Streaming Data. In: SIGMOD Conference, pp. 239–250 (2008)
Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An Adaptive Partitioning Operator for Continuous Query Systems. In: ICDE, pp. 25–36 (2003)
Silberstein, A., Braynard, R., Ellis, C.S., Munagala, K., Yang, J.: A Sampling-Based Approach to Optimizing Top-k Queries in Sensor Networks. In: ICDE, p. 68 (2006)
Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE, pp. 892–903 (2010)
Skordylis, A., Trigoni, N., Guitton, A.: A Study of Approximate Data Management Techniques for Sensor Networks. In: Intelligent Solutions in Embedded Systems, pp. 1–12 (2006)
Spiegel, J., Polyzotis, N.: TuG Synopses for Approximate Query Answering. ACM Trans. Database Syst. 34(1) (2009)
Srivastava, U., Widom, J.: Memory-Limited Execution of Windowed Stream Joins. In: VLDB, pp. 324–335 (2004)
Sun, S., Huang, Z., Zhong, H., Dai, D., Liu, H., Li, J.: Efficient Monitoring of Skyline Queries over Distributed Data Streams. Knowl. Inf. Syst. 25(3), 575–606 (2010)
Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB, pp. 301–310 (2001)
Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams. IEEE Trans. Knowl. Data Eng. 18(2), 377–391 (2006)
Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load Shedding in a Data Stream Manager. In: VLDB, pp. 309–320 (2003)
Tatbul, N., Zdonik, S.B.: Window-Aware Load Shedding for Aggregation Queries over Data Streams. In: VLDB, pp. 799–810 (2006)
Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Efficient and Versatile Top-k Query Processing for Semistructured Data. VLDB J. 17(1), 81–115 (2008)
Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In: VLDB, pp. 333–344 (2003)
Tirthapura, S., Xu, B., Busch, C.: Sketching Asynchronous Data streams over Sliding Windows. Distributed Computing 20(5), 359–374 (2008)
Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial Delays. In: SIGMOD Conference, pp. 130–141 (1998)
Vitter, J.S., Wang, M.: Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets. In: SIGMOD Conference, pp. 193–204 (1999)
Wang, J., Li, G., Feng, J.: Trie-Join: Efficient Trie-based String Similarity Joins with Edit-Distance Constraints. PVLDB 3(1), 1219–1230 (2010)
Weis, M., Naumann, F.: DogmatiX Tracks down Duplicates in XML. In: SIGMOD Conference, pp. 431–442 (2005)
Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-Memory Environment. In: PDIS, pp. 68–77 (1991)
Wu, J., Tan, K.-L., Zhou, Y.: QoS-Oriented Multi-Query Scheduling Over Data Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 215–229. Springer, Heidelberg (2009)
Yang, Y., Krämer, J., Papadias, D., Seeger, B.: HybMig: A Hybrid Approach to Dynamic Plan Migration for Continuous Queries. IEEE Trans. Knowl. Data Eng. 19(3), 398–411 (2007)
Yi, K., Li, F., Cormode, G., Hadjieleftheriou, M., Kollios, G., Srivastava, D.: Small Synopses for Group-by Query Verification on Outsourced Data Streams. ACM Trans. Database Syst. 34(3) (2009)
Yu, H., Hwang, S.-w., Chang, K.C.C.: Enabling Ad-hoc Ranking for Data Retrieval. In: ICDE, pp. 514–515 (2005)
Zhang, Z., Hwang, S.-w., Chang, K.C.C., Wang, M., Lang, C.A.3., Chang, Y.C.: Boolean Ranking: Querying a Database by k-constrained Optimization. In: SIGMOD Conference, pp. 359–370 (2006)
Zhou, X., Gaugaz, J., Balke, W.T., Nejdl, W.: Query Relaxation using Malleable Schemas. In: SIGMOD Conference, pp. 545–556 (2007)
Zimbrao, G., de Souza, J.M.: A Raster Approximation For Processing of Spatial Joins. In: VLDB, pp. 558–569 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Catania, B., Guerrini, G. (2013). Approximate Queries with Adaptive Processing. In: Catania, B., Jain, L. (eds) Advanced Query Processing. Intelligent Systems Reference Library, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28323-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-28323-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28322-2
Online ISBN: 978-3-642-28323-9
eBook Packages: EngineeringEngineering (R0)