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Abstract. We introduce a new multi-region model for simultaneous
segmentation of the left and right ventricles, myocardium and the left
ventricular papillary muscles in MRI. The model enforces geometric
constraints such as inclusion and exclusion between the regions, which
makes it possible to correctly segment different regions even though the
intensity distributions are identical. We efficiently optimize the model
using Lagrangian duality which is faster and more memory efficient than
current state of the art. As the optimization is based on global techniques,
the resulting segmentations are independent of initialization. We evaluate
our approach on two benchmarks with competitive results.

1 Introduction

Automatic segmentation of cardiac MR images is an acknowledged difficult task.
Many successful approaches concentrate on segmenting the left ventricle (LV)
as this part is the most interesting for diagnostic purposes. Still, quantifiable
information about the cardiac function is gained from segmenting the right
ventricle (RV) as well. In this paper, we use a joint model of the whole heart
where the final result is improved compared to segmenting the parts independently.

This paper introduces a new mathematical model for cardiac MR segmentation.
It is based on the following list of desiderata. Firstly, the human heart is composed
of several interacting geometric parts — this fact should be reflected in the model.
Secondly, the model should be complete in the sense that every voxel of the
image should be modeled, both in terms of geometry/shape and appearance using
statistical principles. This avoids many ad hoc procedures. Finally, it should
be possible to estimate a global solution to the resulting optimization problem
which is not dependent on a good initialization. There is always a compromise
between the complexity of the model and the tractability of the optimization
problem. For example, image-driven methods do not have a strong model and are
typically designed to be efficient; however, they rely on good heuristics. The main
contribution of this paper is that we advance the state of the art by showing
that despite a rather sophisticated model, we can in an efficient manner compute
solutions very close to the global optimum for the segmentation problem.

Most segmentation approaches in medical imaging rely on local descent
techniques, e.g. [11,12,14], and may get stuck in local optima. It has been
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shown that it is possible to apply global optimization techniques to make the
segmentation more robust to poor initialization, e.g. [2,10]. We follow this trend.
Our framework builds on the multi-region scheme presented in [5] where it is shown
that geometric relationships, e.g. when one object is included in another, can be
modeled and globally optimized via graph cuts. The key property that makes this
possible is that the resulting energy minimization problem is submodular [9]. We
also identify submodular relationships; however, we go beyond submodularity to
enable other geometric relationships and priors to be incorporated into the model.
The standard technique for solving non-submodular energies of this type is roof
duality (RD) [15]. However, the method is quite memory intensive and may fail
in giving a complete segmentation without time-consuming probing. Instead we
develop a Lagrangian dual approach that uses half of the memory compared to
RD and it always produces a segmentation. The method can easily be parallelized
as described in [16]. Our algorithm is tested on two different data sets, one of
which was used in the MICCAI 2009 Cardiac MR Left Ventricle Segmentation
Challenge [1], on which we achieve results on par with the competing methods.

(a) Four-region model (b) MR view

rp xp

0 (0, 0, 0, 0)
1 (1, 0, 0, 0)
2 (1, 1, 0, 0)
3 (1, 0, 1, 0)
4 (1, 1, 0, 1)

(c) Representation (d) Graph

Fig. 1. (a) A constructed short-axis view showing how the heart is modeled. Region 0 is
the background, region 1 contains myocardium and the left and right ventricular cavities.
Region 2 is the left ventricular cavity and region 3 the right ventricular cavity. Region 4
is the papillary muscles of the left ventricle. (b) An example of a slice from a short-axis
image acquired with MRI where all four regions have been manually delineated. (c)
The Boolean representation of the four regions reflect their geometric relationships as
given in (a). (d) Graph construction for one voxel. The circled number corresponds to
a vertex associated with the region number. The directed arrows are the directed edges
in the graph.

2 Model

In our model, the heart below the atrioventricular plane consists of four different
regions as shown in Fig. 1(a) and (b). The joint model describes both the
geometry of the different regions and their appearances in the MR images. An
energy minimization approach is proposed in which a minimizer of the energy
function gives the desired segmentation.
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Let L be the set of region indices and let P be the set of voxel indices. Each
voxel should be assigned a region index rp ∈ L. We introduce x ∈ B|L|×|P|, where
B = {0, 1} and x is indexed as xi

p with i ∈ L and p ∈ P. Further, xi represents
all Boolean variables associated with region i and xp represents all Boolean
variables associated with voxel p. Each voxel in the image is represented by |L|
Boolean variables, making it possible to directly encode geometric relationships
between regions, like inclusion and exclusion. Fig. 1(c) shows the correspondence
between rp and xp.

The energy function to be minimized is E (x) = D(x) + V (x) + W (x),
whose three components are, in order, the unary terms, the pairwise terms
(regularization) and the geometric interaction terms. For every voxel p, the unary
terms introduce a cost for each labeling of xp:

D(x) =
∑
p∈P

∑
i∈L

Di
p

(
xi
p

)
. (1)

The pairwise terms use a connectivity N to favor smooth and correctly located
boundaries:

V (x) =
∑
i∈L

∑
p,q∈N

V i
p,q

(
xi
p,x

i
q

)
. (2)

The geometric interaction terms associate a cost with labeling voxel p with
different combinations of the two regions i and j and are used either to attract
or repel different regions to each other:

W (x) =
∑
p∈P

∑
i,j∈L
i6=j

W i,j
p

(
xi
p,x

j
p

)
. (3)

Unary terms. The unary terms are constructed from the probability, P, of
each voxel belonging to any of the four defined regions, cf. Fig. 1. We define
µi(p) = − log (P (rp = i)) , for voxel p and region i. The probability P is estimated
from training data under the assumption that the spatial location and the intensity
of a voxel are independent. We split the possible locations into four categories:
left ventricle, right ventricle, myocardium and background. Similarly the intensity
is split into three categories: blood, muscle and background.

The spatial distribution is estimated by first resizing each heart in the training
data to the same size by linear interpolation. Then a binary mask is constructed
for each category and each heart. The masks are enlarged and smoothed and
then they are all added together constructing the final probability mask.

The intensity distribution for each region is estimated by collecting all inten-
sities from the examples in the training data. The histogram of intensities is then
smoothed and a distribution is constructed. For both the location and intensity
probability a lowest probability is set, in order to capture occurrences unseen in
the training data. An example of the final µi’s can be found in Fig. 2.
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(a) Slice. (b) µ0. (c) µ1. (d) µ2. (e) µ3.

4

10

(f) µ4.

Fig. 2. Example of µi for the slice shown in (a). Recall that µi (p) = − log (P (rp = i)).
A lower intensity corresponds to higher probability.

Having estimated µi, the unary terms Di
p

(
xi
p

)
need to be constructed to

reflect Fig. 1(c):

D1
p(1) = µ1(p)− µ0(p), D2

p(1) = µ2(p)− µ1(p), (4)

D3
p(1) = µ3(p)− µ1(p), D4

p(1) = µ4(p)− µ2(p),

and Di
p(0) = 0 for all i and p. For example, region 4 is according to Fig. 1(c)

represented as xp = (1, 1, 0, 1). The cost of this xp is (µ1(p)− µ0(p)) + (µ2(p)−
µ1(p)) + (µ4(p)− µ2(p)) = µ4(p)− µ0(p).

Pairwise terms. The regularization weights are chosen differently for each region
in a method related to the discussion in [6]. For each region i we choose the
pairwise terms as:

V i
p,q (p, q) = wp,q

1

1 + β (P (rp = i)− P (rq = i))
2 , (5)

where β can be used to tune the regularization. The neighborhood N for the
regularization is chosen as 18-connectivity. The multipliers wp,q give different
weights to different types of edges. One common choice is wp,q = 1/ dist(p, q);
however, we instead use the arguably more correct way described in [3] based on
solid angles. Since MRI have anisotropic resolution it is very important to take
that into consideration both when calculating the distance between voxels and
when using the method from [3].

Geometric interaction terms. In our model region 1 contains both region 2
and region 3. This is modeled by the use of geometric interaction terms as
W 1,2

p (0, 1) =∞ and W 1,3
p (0, 1) =∞, ∀p ∈ P. Furthermore, the left ventricular

papillary muscle must be inside the left ventricle. This is modeled as W 2,4
p (0, 1) =

∞, ∀p ∈ P, see Fig. 1(d). By this construction any xp-labeling not listed in
Fig. 1(c) will have ∞ cost except for xp = {1, 1, 1, 1} and xp = {1, 1, 1, 0}, these
two cases are handled in Section 3.

User interaction. The method needs the user to select which slices to be segmented
and it also needs one click in the center of the right and left ventricle in one slice.
The two center points are used to roughly align the hearts in order to get good
spatial statistics. The algorithm can handle slices lacking any of the regions.
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Pre-processing. Badly captured MRI are identified by looking at the distribution
of the intensities. If there are multiple peaks in the histogram close to each other
for the lower intensities, the image is assumed to be too bright and the intensity
distribution is shifted to fit an average histogram.

Post-processing. In all ground truth data we come across, only the left ventricular
epicardium is delineated. In our model we do not have this restriction — we
segment the full myocardium. In order to compare our results with the ground
truth we must remove all myocardium which is not part of the left ventricular
epicardium. To do this, the thickness of the septum is approximated as the shortest
distance between the left and right ventricles in the resulting segmentation.
Then outlying myocardium is removed based on this thickness approximation,
cf. Fig. 4(a).

We also assume that the left ventricle and the myocardium are convex. The
resulting segmentation is taken as the convex hull in each slice.

The regularization can sometimes make the segmentation miss the most apical
slice. In this case either the segmentation from the same slice at another time
step or, if it is not available, the segmentation from a more basal slice is shrunk
and fitted at the bottom.

3 Solving the Optimization Problem

The energy function is minimized using graph cuts by associating each binary
variable with a vertex in an s-t graph. The global minimum is then found as the
minimum cut of the graph. We use the maximum flow implementation [4] to
compute minimum cuts.

It is well-known that an energy E(x) can be minimized exactly by finding
the minimum cut of a graph as long as all energy terms are submodular [9], but
this is not the case for our energy. The unary and pairwise terms are of standard
type and well-known to be submodular. All geometric interactions except the
separation of region 2 and 3 can be represented with a submodular function.
The corresponding graph construction for one voxel is shown in Fig. 1(d). As
illustrated in the figure, we want region 1 to contain regions 2 and 3 and at
the same time we want region 2 and 3 to be separated. Unfortunately, this last
constraint leads to a frustrated cycle and cannot be modeled by a submodular
energy function, see [5].

3.1 Using the Lagrangian Dual

Minimizing E(x) is a difficult problem, since it contains the non-submodular
separation of region 2 and 3. If we let E′(x) be our energy without the separation
constraint, E′ will be easy to minimize. Our model has four different kinds of
vertices, (x1,x2,x3,x4) = x, where the superindex denotes the region label. The
separation constraints dictate that x2 and x3 cannot be equal to 1 at the same
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time. Adding this constraint gives us the new problem

min
x

E′(x)

subject to x2 + x3 ≤ 1.
(6)

We note that this problem can be solved as an integer programming problem.
However, this is not tractable due to the large number of variables. Instead, we
look at the Lagrange dual problem:

max
λ

d(λ)

subject to λ ≥ 0,
(7)

where d(λ) = minx
(
E′(x) + λT

(
x2 + x3 − 1

))
is the Lagrange dual function.

Let d? denote the optimal value for (7) and p? the optimal value for (6). By weak
duality we then have that d? ≤ p?.

The Lagrange dual function d is always concave. However, it is not differen-
tiable in general, which precludes gradient ascent methods for its maximization.
We can, however, use the projected supergradient method [13].

This looks very similar to a gradient ascent method but has some key differ-
ences. Specifically, the method is easy to implement, but in general has worse
convergence properties than first-order gradient-based methods. We refer the
reader to [13,16] for details.

Definition 1. A supergradient to a function f at a point x0 is a vector v
fulfilling f (x)− f (x0) ≤ (x− x0)

T
v, for every point x.

Lemma 1 (from [16]). Let λ be given and let x? be the optimal solution to
d(λ) = minx

(
f1(x) + λT f2(x)

)
. Then f2(x?) is a supergradient to f at λ.

Proof. For any λ it holds that

d (λ) ≤ f1 (x?) + λT f2 (x?) = f1 (x?) + λT
0 f2 (x?) + (λ− λ0)

T
f2 (x?)

= min
x

(
f1 (x) + λT

0 (x?)
)

+ (λ− λ0)
T
f2 (x?) = d (λ0) + (λ− λ0)

T
f2 (x?) .

The projected supergradient method is very simple. Let λ0 be an initial guess
of the optimal value of the concave function d. Then, in each step i a new possible
solution λi+1 is calculated as λi+1 = [λi + τivi]

+
, where vi is any supergradient

to d at λi, τi is a step-length and [·]+ is a projection onto the feasible set {λ ≥ 0}.
From Lemma 1 we directly choose a supergradient for a given λ as v =(

x2
)?

+
(
x3
)? − 1, where

(
xi
)?

are the vertices belonging to label i for the
optimal solution of d (λ) .

In each step, the optimal solution x? for a chosen λi can be calculated via a
minimum graph cut. Furthermore, as the edges will be very similar in each step,
the graph structure can be reused reducing the running time [8].

In the experiments the step size from [16] is used. Since supergradient methods
do not guarantee improved value in each step the best solution thus far is always
saved and once the relative duality gap (p− d)/|p| is small enough the algorithm
terminates. Here p and d are the currently best primal and dual energies.
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Fig. 3. Example segmentation from Lund.

LV endo. LV epi. RV endo.

ED 0.96±0.02 0.93±0.03 0.91±0.07

ES 0.87±0.05 0.88±0.05 0.80±0.11

(a) Full multi-region model.

LV endo. LV epi. RV endo.

ED 0.62±0.12 0.90±0.03 0.57±0.14

ES 0.47±0.25 0.86±0.04 0.42±0.14

(b) Each region segmented separately.

Table 1. Results in the Dice metric for Lund reported as mean ± one standard
deviation. “ED” is end diastole and “ES” is end systole. Note that the multi-region
model has a huge influence on the segmentation results.

4 Experiments

The segmentation is only performed on the slices of the heart which are fully
below the atrioventricular plane. The quality of the segmentation is measured
by the Dice metric, which is given by 2 |A ∩B| / (|A|+ |B|), where A and B are
the ground truth and the computed segmentation, respectively. The algorithm is
evaluated on two data sets: Lund and Sunnybrook. Each data set is trained
and evaluated separately.

Lund consists of cine short-axis steady state free precession MR images of
62 healthy normals captured on a Philips Interera CV 1.5T with five channel
cardiac synergy coil. Each heart has the left and right ventricular endocardium
and the left ventricular epicardium manually delineated by an expert. The data
set is split into two equally sized parts, one used for training and one used for
evaluation. Results are given in Table 1(a) and an example segmentation in Fig. 3.
We also evaluate three clinical parameters. The left ventricular mass has an error
of 15.6±11.5 g. The left and right ventricular ejection fraction errors are 5.6±2.9%
and 7.1±5.2%, respectively.

We also compare our method to a simplified version where we run the
segmentation for each region separately, see Table 1(b). Without the complete
multi-region model, the localization of the ventricles becomes very difficult and
the blood pools are often overestimated. Two examples where the multi-region
model improves the segmentation are given in Fig. 4.
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(a) (left) Complete model and (right) with-
out modeling the right ventricle.

(b) (left) Complete model and
(right) only the right ventricle.

Fig. 4. Examples of how modeling multiple regions improve the segmentation of the
ventricular epi- and endocardium. The color scheme is the same as in Fig. 1.

Our model was also optimized with roof duality (RD) [15]. Our method was
constantly faster than RD and at the same time giving a very small relative
duality gap. The small gap gives us certificates that the solutions are very close
to (and in many cases exactly) the global minimum, see Table 2.

Sunnybrook consists of 30 patients with different heart diseases and is split
up into two equally sized parts, one for training and one for evaluation. The
data set was used in the 2009 MICCAI segmentation challenge [1]. Sunnybrook
lacks ground truth for the right ventricles, so this was manually constructed by
a non-expert. Therefore, this ground truth was only used for training and not
for evaluation. The results given by the evaluation code used in the challenge is
given in Table 3 along with results from competing methods. In the challenge,
the Dice metric is calculated per slice and averaged over all slices.

Note that the small training data of Sunnybrook gives our method a
disadvantage as there just 15 hearts spanning over three different diseases and
one group of normals. Image-driven methods do not suffer from the small training
set as they do not need to be trained.

Method Mean

Our 46±27

RD 6109±12451

(a) Sunnybrook [1]

Method Mean

Our 30±27

RD 1934±7984

(b) Lund

After 25 iterations

Sunnybrook 0.0014±0.0033

Lund 0.000055±0.0021

(c) Relative duality gap

Table 2. Running time in seconds per heart (ED and ES) and relative duality gap of
our algorithm after 25 iterations run on an Intel i5 2500K CPU. For RD we canceled
any computation taking longer than 12 hours.
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Method
Dice LV Mass (g) LV ejection fraction (%)

LV endo. LV epi.

Our 0.86±0.05 0.92±0.02 27.1±28.3 12.5±8.7

Marák et al. 0.86±0.04 0.93±0.01 23±? 14±?

Lu et al. 0.89±0.03 0.94±0.02 21.6±14.6 8.08±5.06

Wijnhout et al. 0.89±0.03 0.93±0.01 28.7±18.7 7.02±4.78

Casta et al. ? 0.93±? † ?
O’Brien et al. 0.81±? 0.91±? ? ?
Constantinides et al. 0.89±0.04 0.92±0.02 † †
Huang et al. 0.89±0.04 0.94±0.01 ? ?
Jolly 0.88±0.04 0.93±0.02 31.8±17.7 8.35±5.78

Table 3. Results for Sunnybrook. “?” means not reported in the corresponding paper.
“†” means that the result is not directly comparable. Mass and ejection fraction is
reported as difference between manual and automatic value.

5 Future work and limitations

Extending with one more region. It is possible to extend the model to also include
papillary muscles in the right ventricle; we need only to introduce one more
variable per voxel. If we let µ5 = P (rp = 5) for this new region and follow the
notation in Fig. 1(d) we need only to add one vertex corresponding to the new
variable and two edges: one s-t edge with value µ5 − µ3 and one edge going from
region 5 to region 3 with ∞ weight. Initial experiments gave worse results for
both the right ventricle and myocardium segmentation with the added region.
The new region had a tendency to overflow into the septum since this would give
region 3 a rounder shape giving a lower regularization cost. We have not yet
found a good way of tackling this without relying too heavily on heuristics.

Short- and long-axis images. The Lund data set was manually delineated using
both short- and long-axis images. For a number of hearts the most basal slice
for the short-axis images containing the left ventricular cavity also cut through
to the atrium. For these slices it was hard or even impossible to even manually
delineate the left ventricle solely based on information from the short-axis images.
When the ground truth was produced, long-axis images were used to properly
segment them. It would be desirable for our algorithm to incorporate information
from long-axis images as well so we could handle these few slices as well.

Reducing memory usage. In the current implementation we use a standard max-
flow implementation [4], but the structure of the graph is highly repetitive. For
instance, all geometric interaction terms are equal and they need not be explicitly
stored in the graph. Also, if we were to use a pairwise term based on voxel
intensity we would just need to save the pairwise terms in one ”layer” reducing
the memory used by the pairwise terms to 1/4.
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6 Concluding Discussion

We have demonstrated that it is possible to apply global optimization techniques
for segmentation of cardiac MRI using a sophisticated model of the heart. The
model is optimized with a new method which is both fast and memory effec-
tive. The added complexity of the model is motivated by improvements in the
segmentation results.

Acknowledgments We thank the Cardiac MR group at the University Hospital
of Lund for providing us with the Lund data set and expert delineations. We
used Segment [7] to read the DICOM images.
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