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Abstract. We show that any parameter of patterns that is an upper
bound for the treewidth of appropriate encodings of patterns as relational
structures, if restricted to a constant, allows the membership problem
for pattern languages to be solved in polynomial time. Furthermore, we
identify a new such parameter, called the scope coincidence degree.

Keywords: Pattern Languages, Membership Problem, Treewidth, Ex-
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1 Introduction

A pattern α is a finite string that consists of variables and terminal symbols
(taken from a fixed alphabet Σ), and its language is the set of all words that can
be derived from α when substituting arbitrary words over Σ for the variables.
For example, the language L generated by the pattern α := x1ax2bx1 (where
x1, x2 are variables and a, b are terminal symbols) consists of all words with an
arbitrary prefix u, followed by the letter a, an arbitrary word v, the letter b and
a suffix that equals the prefix u. Thus, w1 := aaabbaa is contained in L, whereas
w2 := baaba is not.

Patterns provide a compact and natural way to describe formal languages.
In their original definition given by Angluin [1] variables can only be substi-
tuted by non-empty words; hence, the term nonerasing pattern languages (or,
for short, NE-pattern languages) is used. Extended or erasing pattern languages
(or, for short, E-pattern languages) where variables can also be substituted by
the empty word have been introduced by Shinohara [18]. The original motivation
for pattern languages (cf. Angluin [1]) is derived from inductive inference, i. e.,
the task of inferring a pattern from any given sequence of all words in its pattern
language, for which numerous results can be found in the literature (see, e. g.,
Angluin [1], Shinohara [18], Lange and Wiehagen [8], Rossmanith and Zeug-
mann [16], Reidenbach [11,12] and, for a survey, Ng and Shinohara [10]). On the
other hand, due to their simple definition, pattern languages have connections
to many other areas of theoretical computer science and their general properties
have been investigated in various contexts (for a survey, see, e. g., Mateescu and
A. Salomaa [9]). For example, there exist several versions of regular expressions
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2 D. Reidenbach and M. L. Schmid

that are extended in such a way that pattern languages can be defined (see, e. g.,
Bordihn et al. [3]). The problem to decide for a given word w and a pattern α
whether or not the variables of α can be substituted in such a way that w is
obtained, i. e., the membership problem for pattern languages, has been shown
to be NP-complete by Angluin [1].

Besides the theoretical importance of pattern languages, the concept of pat-
terns also finds practical application in so-called extended regular expressions
with backreferences (REGEX for short) (see, e. g., Câmpeanu et al. [5]). REGEX
can roughly be considered as classical regular expressions that are equipped with
the possibility to define backreferences, i. e., to require factors to be repeated at
several defined positions in the word; hence, backreferences correspond to the
variables in patterns. While backreferences dramatically increase the expressive
power of classical regular expressions, they are also responsible for the member-
ship problem of this language class to become NP-complete. This is particularly
worth mentioning as today’s text editors and programming languages (such as
Perl, Python, Java, etc.) all provide so-called REGEX engines that compute the
solution to the membership problem for any language given by a REGEX and
an arbitrary string. Hence, despite its theoretical intractability, algorithms that
perform the matchtest for REGEX are a practical reality. While pattern lan-
guages merely describe a proper subset of REGEX languages, they cover what
is computationally hard, i. e., the concept of backreferences. Hence, investigat-
ing the membership problem for pattern languages helps to improve algorithms
solving the matchtest for extended regular expressions with backreferences.

Our main research task is to identify parameters of patterns that, if restricted
to a constant, allow a polynomial time membership problem. The benefit of find-
ing such parameters is twofold. Firstly, we can learn what properties of a pattern
are actually responsible for the complexity of the membership problem, i. e., we
achieve a refined complexity analysis of this problem. Secondly, restricting these
parameters is likely to lead to improved algorithms for the membership problem
of pattern languages. The first such parameter that comes to mind is the num-
ber of different variables in a pattern. Its restriction constitutes a trivial way to
obtain a polynomial time membership problem, since the brute force algorithm
that simply enumerates all possibilities to substitute the variables by terminal
words in order to check whether the input word can be obtained is exponential
in the number of variables. Nevertheless, the number of variables is a central
parameter of patterns and important results about the learnability of pattern
languages (see Angluin [1] and Reischuk and Zeugmann [15]) as well as recent
results about the inclusion problem of pattern languages (see Bremer and Frey-
denberger [4]) are concerned with patterns with a restricted number of variables.
The membership problem for pattern languages given by patterns with only one
occurrence per variable (introduced by Shinohara [18]) is also solvable in poly-
nomial time, simply because these patterns describe regular languages; hence,
they are called regular patterns.

The arguably first nontrivial restriction of patterns that allow a polynomial
time membership problem are Shinohara’s non cross patterns [19], i. e., patterns
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where between any two occurrences of the same variable x no other variable
different from x occurs. However, this result does not provide a structural pa-
rameter of patterns that can be considered to contribute to the complexity of
the membership problem. Recently, in [14], Shinohara’s result has been extended
to an infinite hierarchy of classes of pattern languages with a polynomial time
membership problem. The idea in [14] is to restrict a rather subtle parameter,
namely the distance several occurrences of any variable x may have in a pattern
(i. e., the maximum number of different variables separating any two consecutive
occurrences of x). This parameter is called the variable distance vd of a pattern
α, and in [14] it is demonstrated that the membership problem is solvable in
time O(|α|3 × |w|(vd(α)+4)), so it is exponential only in the variable distance.

In this work, we approach the problem of identifying such parameters in a
novel and quite general way. More precisely, we encode patterns and words as
relational structures and, thus, reduce the membership problem to the homomor-
phism problem for relational structures. Our main result is that any parameter
of patterns that is an upper bound for the treewidth of the corresponding rela-
tional structures, if restricted to a constant, allows the membership problem to
be solved in polynomial time. In this new framework, we can restate the known
results about the complexity of the membership problem mentioned above, as
well as identifying a new parameter that is stronger than the variable distance.
Therefore, we provide a convenient way to treat the membership problem for pat-
tern languages, which, as shall be pointed out by our results, has still potential
for further improvements.

Note that, due to space constraints, all proofs are omitted.

2 Preliminaries

Let N := {0, 1, 2, 3, . . .}. For an arbitrary alphabet A, a string (over A) is a finite
sequence of symbols from A, and ε stands for the empty string. The notation
A+ denotes the set of all nonempty strings over A, and A∗ := A+ ∪{ε}. For the
concatenation of two strings w1, w2 we write w1 · w2 or simply w1w2. We say
that a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1 · v ·u2. The notation |K| stands for the size of a set K or the length
of a string K. The term alph(w) denotes the set of all symbols occurring in w.
If we wish to refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a string
w = a1 · a2 · · · · · an, ai ∈ A, 1 ≤ i ≤ n, we use w[j] := aj . Furthermore, for each
j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj · aj+1 · · · · · aj′ and w[j,−] := w[j, |w|].
If j > |w|, we define w[j,−] = ε.

Pattern Languages and the Scope Coincidence Degree

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only if, for
every a ∈ A, h(a) 6= ε. Let Σ be a finite alphabet of so-called terminal symbols
and X a countably infinite set of variables with Σ∩X = ∅. We normally assume



4 D. Reidenbach and M. L. Schmid

X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X, a terminal-
free pattern is a nonempty string over X and a word is a string over Σ. For any
pattern α, we refer to the set of variables in α as var(α).

A morphism h : (Σ ∪X)
∗ → Σ∗ is called a substitution if h(a) = a for every

a ∈ Σ. We define the E-pattern language of a pattern α by LE,Σ(α) := {h(α) |
h : (Σ ∪X)

∗ → Σ∗ is a substitution}. The NE-pattern language LNE,Σ(α) of α
is defined analogously, just with respect to nonerasing substitutions. Since in our
work the impact of the choice of the alphabet Σ is negligible, we mostly denote
pattern languages by LE(α) and LNE(α).

The problem to decide for a given pattern α and a given word w ∈ Σ∗ whether
w ∈ LE(α) (or w ∈ LNE(α)) is called the membership problem for E-pattern
languages (or NE-pattern languages, respectively). For every class C ⊆ (Σ ∪X)

∗

and every Z ∈ {E,NE}, Z-PATMem(C) denotes the membership problem for
Z-pattern languages where the patterns are restricted to the class C.

The concept of the scope coincidence degree has already been introduced
in [13]. However, here we shall define it in a slightly different (yet equiva-
lent) way. Let α be a pattern. For every y ∈ var(α), the scope of y in α is
defined by scα(y) := {i, i + 1, . . . , j}, where i is the leftmost and j the right-
most occurrence of y in α. The scopes of y1, y2, . . . , yk ∈ var(α) coincide in
α if and only if

⋂
1≤i≤k scα(yi) 6= ∅. Finally, the scope coincidence degree of

α (scd(α)) is the maximum number of variables in α such that their scopes
coincide. Let Σ := {a, b, c} and let the pattern β ∈ (Σ ∪ X)∗ be given by
β := x1bx2ax1x3x2abx3x4x2x4x5bcbx1x4x5. It is easy to see that each set
{x1, x2, x3}, {x1, x2, x4} and {x1, x4, x5} contain variables the scopes of which
coincide, but there does not exist a set of more than 3 variables with the same
property. Hence, scd(β) = 3. It is straightforward to see that the scope coinci-
dence degree can be computed in time linear in the length of the pattern.

Relational Structures, Treewidth and Homomorphism Problem

For the sake of completeness, we repeat the following standard definitions very
briefly, and for a comprehensive reference, the reader is referred to Chapters 4,
11 and 13 of Flum and Grohe [6].

A (relational) vocabulary τ is a finite set of relation symbols. Every relation
symbol R ∈ τ has an arity arity(R) ≥ 1. A τ -structure (or simply structure),
comprises a finite set A called the universe and, for every R ∈ τ , an interpre-
tation RA ⊆ Aarity(R). For example, every graph can be given as a relational
structure over a vocabulary with one binary relation symbol representing the
edges. Let A and B be structures of the same vocabulary τ with universes A
and B, respectively. A homomorphism from A to B is a mapping h : A → B
such that for all R ∈ τ , of arity r, and for all a = (a1, a2, . . . , ar) ∈ Ar, a ∈ RA
implies h(a) ∈ RB, where h(a) = (h(a1), h(a2), . . . , hr(ar)).

Next, we introduce the concept of a treewidth of a graph G, denoted by tw(G).
We omit the standard definition of the treewidth, that makes use of the concept
of tree decompositions of graphs (see, e. g., Bodlaender [2]). Instead, we apply an
alternative characterisation in terms of a game due to Seymour and Thomas [17].



Patterns with Bounded Treewidth 5

In the robber-cops-game (called jump searching in [17]), a number of cops try to
catch a robber on a graph. Let G := (V,E) be a graph. A position (of the robber-
cops-game) is a pair (C,R), where C ⊆ V and R is a connected subgraph of G
that does not contain any vertex of C. The set C contains the vertices currently
occupied by cops. The set R, on the other hand, is the position of the robber.
Since the robber can move with infinite speed we can interpret it to occupy all
vertices of the connected subgraph R at the same time. The initial position of the
game is (C0, R0), where C0 = ∅ and R0 is some connected subgraph chosen by
the robber. At the start of the ith step of the game we have position (Ci−1, Ri−1).
Now all the cops are removed from the graph and then again placed on some
vertices Ci ⊆ V . After that, the robber chooses (if possible) a new connected
subgraph Ri that does not contain any vertex from Ci and touches Ri−1, i. e.,
Ri−1 and Ri have a common vertex or an edge connects a vertex of Ri−1 with
a vertex of Ri. If in any step i of the robber cops game, the cops could choose
a set of vertices Ci such that there does not exists a position (Ci, Ri), i. e., for
every possible connected subgraph Ri that touches Ri−1, Ri ⊆ Ci is satisfied,
then the cops win the robber-cops-game. We say that k ∈ N cops can catch a
robber on G if the robber-cops-game can be won by the cops such that, for every
position (Ci, Ri) in the game, |Ci| ≤ k.

For example, one cop is not enough to catch a robber even on a single path,
since the robber can always outrun the cop as soon as it changes to another
vertex. Two cops can catch a robber on a path and also on arbitrary trees. To
catch a robber on a simple circle three cops are required: one is permanently
placed on some vertex, which turns the cycle in a path, and then the other two
can corner the robber in one of the two dead ends. The next theorem establishes
the relation between the robber-cops-game and the treewidth of a graph.

Theorem 1 (Seymour and Thomas [17]). Let G be an arbitrary graph. Then
k ∈ N cops can catch a robber on G if and only if tw(G) ≤ k − 1.

In order to define the treewidth of relational structures, we need the concept
of the Gaifman graph of a τ -structure A, which is the graph that has the universe
A of A as vertices and two vertices are connected if and only if they occur
together in some relation (see Chapter 11 of Flum and Grohe [6]). Now we can
state the definition of the treewidth that shall be used for our results:

Definition 2. The treewidth of a structure equals k−1, where k is the minimum
number of cops that are sufficient to catch a robber on its Gaifman graph.

The homomorphism problem HOM is the problem to decide, for given struc-
tures A and B, whether there exists a homomorphism from A to B. For any set
of structures C, by HOM(C) we denote the homomorphism problem, where the
left hand structure is restricted to be from C. If C is a class of structures with
bounded treewidth, then HOM(C) can be solved in polynomial time. This is a
classical result that has been first achieved in terms of constraint satisfaction
problems by Freuder [7] (see also Chapter 13 of Flum and Grohe [6]).

Theorem 3 (Freuder [7]). Let C be a set of structures with bounded treewidth.
HOM(C) is solvable in polynomial time.
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3 Patterns and Words as Relational Structures

In this section, we introduce a way to represent patterns and terminal words as
relational structures. Our overall goal is to reduce the membership problem for
pattern languages to the homomorphism problem for relational structures.

Representing words as relational structures is a common technique when
mathematical logic is applied to language theory (see, e. g., Thomas [20] for a
survey). However, our representations of patterns and words by structures differ
from the standard technique, since our approach is tailored to the homomorphism
problem of structures and, furthermore, we want to exploit the treewidth.

In order to encode patterns and terminal words, i. e., an instance of the
membership problem for pattern languages, we use the relational vocabulary
τΣ := {E,S, L,R}∪{Da | a ∈ Σ}, where E,S are binary relations and L,R,Da,
a ∈ Σ, are unary relations. The vocabulary depends on Σ, the alphabet under
consideration. In order to represent a pattern α by a τΣ-structure, we interpret
the set of positions of α as the universe. The roles of S, L, R and Da, a ∈ Σ,
are straightforward: S relates adjacent positions, L and R are singletons that
contain the leftmost and rightmost position, respectively, and, for every a ∈ Σ,
the relation Da contains the positions in α where the terminal symbol a occurrs.
For the encoding of the variables, we do not explicitly store their positions in
the pattern, which seems impossible, since the number of different variables
can be arbitrarily large. Instead, we use the relation E in order to record pairs
of positions where the same variable occurs and, furthermore, this is done in a
“sparse” way. More precisely, the relation E relates some positions with the same
variable, i. e., positions i, j with α[i] = α[j], in such a way that the symmetric
transitive closure of E contains all pairs (i, j) with α[i] = α[j] and α[i] ∈ X.
This way of interpreting relation E is crucial for our results.

We now state the formal definition and shall illustrate it afterwards.

Definition 4. Let α be a pattern and let Aα be a τΣ-structure. Aα is an α-
structure if it has universe Pα := {1, 2, . . . , |α|} and SAα := {(i, i+ 1) | 1 ≤ i ≤
|α| − 1}, LAα := {1}, RAα := {|α|}, for every a ∈ Σ, DAαa := {i | α[i] = a},
and EAα is such that, for all i, j ∈ Pα,

– (i, j) ∈ EAα implies α[i] = α[j] and i 6= j,
– α[i] = α[j] implies that (i, j) is in the symmetric transitive closure of EAα .

Since τΣ contains only unary and binary relation symbols, it is straightfor-
ward to derive the Gaifman graph from an α-structure, which is simply a graph
with two different kinds of edges due to SAα and EAα . Hence, we shall switch
between these two models at our convenience without explicitly mentioning it. In
the previous definition, the universe as well as the interpretations for the relation
symbols S, L, R and Da, a ∈ Σ, are uniquely defined for a fixed pattern α, while
there are several possibilities to define an interpretation of E. Intuitively, a valid
interpretation of E is created by connecting different occurrences of the same
variable by edges in such a way that all the occurrences of some variable describe
a connected component. The simplest way to do this is to add an edge between
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every two occurrences of the same variable, i. e., EAα := {(i, j) | α[i] = α[j]}.
However, we shall see that for our results the interpretation of E is crucial and
using the one just mentioned is not advisable. Another example of a valid inter-
pretation of E is the following one. For every x ∈ var(α), let lx be the leftmost
occurrence of x in α. Defining EAα :=

⋃
x∈var(α){(lx, i) | lx < i ≤ |α|, α[i] = x}

yields another possible α-structure.
Next, we define a canonical α-structure, i. e., the interpretation of E is such

that every occurrence of a variable x at position i is connected to the next
occurrence of x to the right of position i.

Definition 5. Let α be a pattern. The standard α-structure (Asα) is the α-
structure where EA

s
α := {(i, j) | 1 ≤ i < j ≤ |α|,∃ x ∈ X such that x = α[i] =

α[j] and α[k] 6= x, i < k < j}.

As an example, we consider the standard α-structure Asα for the pattern
α := x1·a·b·x1·b·x2·a·x1·x2·x1. The universe ofAsα is Pα = {1, 2, . . . , 10} and the
relations are interpreted in the following way. SA

s
α = {(1, 2), (2, 3), . . . , (9, 10)},

LA
s
α = {1}, RAsα = {10}, DA

s
α

a = {2, 7}, DA
s
α

b = {3, 5} and, finally, EA
s
α =

{(1, 4), (4, 8), (6, 9), (8, 10)}.
We continue with representing words over the terminal alphabet Σ as τΣ-

structures. We recall that it is our goal to represent the membership problem for
pattern languages as homomorphism problem for relational structures. Hence,
the way we represent terminal words by τΣ-structures must cater for this pur-
pose. Furthermore, we have to distinguish between the E case and the NE case.
We first introduce the NE case and shall afterwards point out how to extend the
constructions for the E case. We choose the universe to be the set of all possible
factors of w, where these factors are represented by their unique start and end
positions in w; thus, two factors that are equal but occur at different positions
in w are different elements of the universe. The interpretation of L contains all
prefixes and the interpretation of R contains all suffixes of w. The interpretation
of S, which for patterns contains pairs of adjacent variables, contains now pairs
of adjacent (non-overlapping) factors of w. The relation E is interpreted such
that it contains all pairs of factors that are equal and non-overlapping. Finally,
for every a ∈ Σ, Da contains all factors of length one that equal a. This is
necessary for the possible terminal symbols in the pattern.

For the E case, the empty factors of w need to be represented as well. To this
end, for every i, 0 ≤ i ≤ |w|, we add an element iε to the universe denoting the
empty factor between positions i and i + 1 in w. The interpretations of S and
R are extended to contain the empty prefix and the empty suffix, respectively,
and relation S is extended to relate non-empty factors to adjacent empty factors
and, in addition, each empty factor is also related to itself. Next, we formally
define this construction for the NE case and its extension to the E case.

Definition 6. Let w ∈ Σ∗ be a terminal word. The standard-NE-w-structure
(NE−As

w) with universe Pw is defined by

– Pw := {(i, j) | 1 ≤ i ≤ j ≤ |w|},
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– ENE−As
w := {((i, j), (i′, j′)) | j < i′ or j′ < i,w[i, j] = w[i′, j′]},

– SNE−As
w := {((i, j), (j + 1, j′)) | 1 ≤ i ≤ j, j + 1 ≤ j′ ≤ |w|},

– LNE−As
w := {(1, j) | 1 ≤ j ≤ |w|},

– RNE−As
w := {(i, |w|)| | 1 ≤ i ≤ |w|} and,

– for every a ∈ Σ, D
NE−As

w
a := {(i, i) | w[i] = a}.

Let NE−As
w be the standard-NE-w-structure with universe Pw. We define the

standard-E-w-structure (E−As
w) with universe PE

w as follows:

– PE
w := Pw ∪ {iε | 0 ≤ i ≤ |w|},

– EE−As
w := ENE−As

w ∪ {(iε, jε) | 0 ≤ i, j ≤ |w|, i 6= j},
– SE−As

w := SNE−As
w ∪ {(iε, iε) | 0 ≤ i ≤ |w|} ∪

{((i, j), jε)) | 1 ≤ i ≤ j ≤ |w|} ∪ {(iε, (i+ 1, j)) | 0 ≤ i ≤ j ≤ |w|},
– LE−As

w := LNE−As
w ∪ {0ε},

– RE−As
w := RNE−As

w ∪ {|w|ε} and,

– for every a ∈ Σ, D
E−As

w
a := D

NE−As
w

a .

In the following lemma we state that the membership problem for pattern
languages can be reduced to the homomorphism problem for relational struc-
tures. We shall informally explain this for the case of terminal-free NE-pattern
languages. If there exists a substitution that maps the pattern α to the word
w, then we can construct a homomorphism g from Aα to NE−As

w by mapping
the positions of α to the factors of w according to the substitution h. If two
positions in α are adjacent, then so are their images under h in w and the same
holds for equal variables in α; hence, g is a valid homomorphism. If, on the other
hand, there exists a homomorphism g from Aα to NE−As

w, then the elements
of the universe of Aα, i. e., positions of α, are mapped onto factors of w such
that a factorisation of w is described. This is enforced by the relations S, L and
R. Furthermore, this mapping from α to w induced by g is a substitution, since
the symmetric transitive closure of EAα contains all pairs (i, j) with α[i] = α[j]
and α[i] ∈ X. For general patterns with terminal symbols and for the E case the
idea is the same, but the situation is technically more complex.

Lemma 7. Let α be a pattern, w ∈ Σ∗ and let Aα be an α-structure. Then
w ∈ LNE(α) (or w ∈ LE(α)) if and only if there exists a homomorphism from
Aα to NE−As

w (or from Aα to E−As
w, respectively).

From Lemma 7 and Theorem 3, we can conclude that, for patterns that can
be encoded by α-structures with a bounded treewidth, the membership problem
is solvable in polynomial time.

Theorem 8. Let C ⊆ (X ∪ Σ)+ and let g be a mapping that, in polynomial

time, maps every α ∈ C to an α-structure, such that Ĉ := {g(α) | α ∈ C} has
bounded treewidth. Then NE-PATMem(C) and E-PATMem(C) are decidable in
polynomial time.
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Due to Theorem 8, the task of identifying parameters of patterns that, if
bounded, allow a polynomial time membership problem, can now be seen from
a different angle, i. e., as the problem of finding classes of patterns that can be
encoded by α-structures with a bounded treewidth. The fact that we can easily
rephrase known results about the complexity of the membership problem for
pattern languages in terms of standard α-structures with a bounded treewidth,
pointed out by the following proposition, indicates that this point of view is
natural and fits with our current knowledge of the membership problem.

Proposition 9. Let α be a pattern. If α is non-cross or regular then tw(Asα) ≤
2. Furthermore, tw(Asα) ≤ | var(α)|.

While Proposition 9 is trivially true, an analogous result can also be given
for the variable distance of patterns (see Section 1 and [14]), which is a more
subtle parameter the restriction of which is known to yield a polynomial time
membership problem. This follows from the main result of the subsequent sec-
tion, which shows that a stronger parameter than the variable distance, namely
the already mentioned scope coincidence degree, also allows a polynomial time
membership problem if restricted to a constant. The question arises why we do
not simply consider the treewidth of a pattern α, i. e., tw(α) := min{tw(Aα) |
Aα is an α-structure}, to be an appropriate parameter of patterns that should
be bounded in order to solve the membership problem efficiently. The problem
here is that, firstly, for a pattern α there exists an exponential number of α-
structures and, secondly, computing the treewidth of graphs is an NP-complete
problem. Consequently, it is not clear whether this parameter can be computed
in polynomial time and, in order to conclude complexity theoretical results from
Theorem 8, we rely on finding easily computable parameters of patterns that –
ideally as tight as possible – are upper bounds for tw(α).

4 Patterns with Restricted Scope Coincidence Degree

In this section we show that, for every pattern α, the treewidth of the standard
α-structure is bounded by the scope coincidence degree of α. To this end, we shall
play the robber-cops-game defined in Section 2 on the Gaifman graph of stan-
dard α-structures. For the sake of convenience, we shall not distinguish anymore
between a pattern α and the Gaifman graph of its standard α-structure, i. e., we
change at will between interpreting the positions in the pattern as occurrences
of variables or as vertices in the Gaifman graph of the standard α-structure.
Similarly, we allow some leeway with respect to the robber-cops-game and shall
play it directly on a pattern α, meaning to actually playing it on the Gaifman
graph of its standard α-structure. Next, we define a strategy to search a pattern
in terms of the robber-cops-game.

Definition 10. Let α be a pattern. We define the inspector search strategy (on
α). We assume that we have an infinite number of cops, where one distinct cop is
called the inspector and all other cops are called constables. Let m, 1 ≤ m ≤ |α|,
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be the leftmost occurrence of a variable in α. Initially, the inspector is placed on
vertex m. For every i, m ≤ i ≤ |α| − 1, when the inspector is located on vertex
i, the following steps are executed:

1. If α[i] is the leftmost occurrence of some variable x in α, then a constable
is placed on vertex i. If α[i] is an occurrence of some variable x, but not the
leftmost one, then the constable from vertex j is moved to vertex i, where j <
i, is the rightmost occurrence of x that is currently occupied by a constable.

2. The inspector moves from vertex i to vertex i+ 1.
3. If i is the rightmost occurrence of some variable x in α, then the constable

on vertex i is removed.

The number of constables that are required to carry out the inspector search
strategy on α is called the constable number of α.

Informally, the inspector search strategy on some pattern α can be described
in the following way. The inspector moves through the pattern from left to right.
Every occurrence of a terminal symbol is ignored and the inspector just moves
on. If it enters an occurrence of a variable, it places a constable there. A new
constable is required if this is the first occurrence of some variable x. If, on the
other hand, there exists an earlier occurrence of x in α, then, by definition of the
search strategy, a constable is located at the next occurrence of x to the left of the
current inspector position. This constable is now moved forward to the position of
the inspector. If the inspector reaches a rightmost occurrence of a variable, then
also a constable is moved to this position, but removed immediately after the
inspector moves on. However, it is important that the constable is placed there
before the inspector moves on and remains there while the inspector moves to
the next position. Obviously, this procedure terminates as soon as the inspector
reaches position |α|. We note that as long as there exists at least one variable
in the pattern, the constable number is at least one, hence, we can assume that
the constable number is always at least one.

We observe the following property of the inspector search strategy.

Proposition 11. Let α be a pattern. Every time step 1 of the inspector search
strategy on α is executed, the following condition is satisfied. Let p1, p2, . . . , pk ∈
{1, 2, . . . , |α|} with p1 < p2 < . . . < pk be the positions occupied by constables.
Then there are k different variables y1, y2, . . . , yk, such that var(α[p1, pk]) =
{y1, y2, . . . , yk} and, for every i, 1 ≤ i ≤ k, pi is the rightmost occurrence of yi
in α[p1, pk].

The next lemma describes how a certain area of the pattern can be sealed
off by the constables, such that the robber cannot reach this area.

Lemma 12. Let α be a pattern and let p1, p2, . . . , pk ∈ {1, 2, . . . , |α|} with p1 <
p2 < . . . < pk such that var(α[p1, pk]) = {y1, y2, . . . , yk} and, for every i, 1 ≤
i ≤ k, pi is the rightmost occurrence of yi in α[p1, pk]. If vertices p1, . . . , pk are
occupied by constables, then the robber cannot reach a vertex t, p1 ≤ t ≤ pk,
from a vertex s, pk < s.
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The previous results can be used in order to show that, for every pattern α,
a robber can be caught by applying the inspector search strategy on α.

Lemma 13. Let α be a pattern with constable number k. If k = 1, then 3 cops
are sufficient to catch a robber on the Gaifman graph of Asα, and if k ≥ 2, then
k + 1 cops are sufficient to catch a robber on the Gaifman graph of Asα.

It is worth mentioning that the special case in the above lemma concerning
patterns with a constable number of 1 is caused by the fact that the patterns
may contain terminals. For terminal-free patterns α with a constable number of
1, a robber can be caught on the Gaifman graph of Asα by 2 cops. Next, we show
that the constable number of a pattern equals its scope coincidence degree.

Lemma 14. For every pattern α, the constable number of α equals scd(α).

By the previous lemmas, we can conclude that, for every pattern α with
scd(α) = 1, a robber can be caught on α by using one inspector and 2 consta-
bles, and for every pattern α with scd(α) = k, k ≥ 2, a robber can be caught
on α by using one inspector and k constables. Hence, referring to Theorem 1,
the treewidth of the standard α-structure is bounded by the scope coincidence
degree. Furthermore, the standard α-structures of the class of patterns with
restricted variable distance have a bounded treewidth as well.

Theorem 15. Let α be a pattern. Then tw(Asα) ≤ scd(α) ≤ vd(α) + 1.

Theorems 8 and 15 imply the following complexity result.

Corollary 16. Let k ∈ N and Z ∈ {E,NE}. The problem Z-PATMem({α |
scd(α) ≤ k}) is solvable in polynomial time.

We conclude this work by some questions not explicitly addressed so far. Since
in Definition 4 we leave the exact definition of the relation symbol E open, there
are many possible α-structures for a pattern α that all permit an application of
Theorem 8. However, the standard way of encoding patterns (Definition 5) has
turned out to be sufficient for all results in the present paper. Hence, it would
be interesting to know whether or not, for some pattern α, there exists a better
α-structure than the standard one, i. e., tw(α) < tw(Asα). This question is open,
but we conjecture that it can be answered in the negative.

Another question is whether the scope coincidence degree of a pattern α is a
tight upper bound for the treewidth of the standard α-structure. This question
can be answered in the negative. Consider for example the pattern α := x1 · x2 ·
· · · · xk−1 · xk · xk · xk−1 · · · · · x2 · x1. It is easy to see that scd(α) = k. On the
other hand, we can catch a robber on α with 3 cops. Thus tw(Asα) ≤ 2 < scd(α).
This examples also gives an indication that it might be possible to identify a
parameter closer to tw(α) still preserving polynomial time computability.
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