Skip to main content

Optimising Performance of Quadrature Methods with Reduced Precision

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7199))

Abstract

This paper presents a generic precision optimisation methodology for quadrature computation targeting reconfigurable hardware to maximise performance at a given error tolerance level. The proposed methodology optimises performance by considering integration grid density versus mantissa size of floating-point operators. The optimisation provides the number of integration points and mantissa size with maximised throughput while meeting given error tolerance requirement. Three case studies show that the proposed reduced precision designs on a Virtex-6 SX475T FPGA are up to 6 times faster than comparable FPGA designs with double precision arithmetic. They are up to 15.1 times faster and 234.9 times more energy efficient than an i7-870 quad-core CPU, and are 1.2 times faster and 42.2 times more energy efficient than a Tesla C2070 GPU.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andricopoulos, A.D., Widdicks, M., Newton, D.P., Duck, P.W.: Extending quadrature methods to value multi-asset and complex path dependent options. Journal of Financial Economics 83(2), 471–499 (2007)

    Article  Google Scholar 

  2. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. Journal of Political Economy 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boland, D., Constantinides, G.: Automated precision analysis: A polynomial algebraic approach. In: Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 157–164 (2010)

    Google Scholar 

  4. Chow, G., Kwok, K., Luk, W., Leong, P.: Mixed precision processing in reconfigurable systems. In: Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 17–24 (May 2011)

    Google Scholar 

  5. Davis, M.H.A., Esparragoza-Rodriguez, J.C.: Large portfolio credit risk modeling. International Journal of Theoretical and Applied Finance 10(04), 653–678 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fang, C.F., Rutenbar, R.A., Chen, T.: Fast, accurate static analysis for fixed-point finite-precision effects in DSP designs. In: IEEE/ACM international Conference on Computer-Aided Design, pp. 275–282 (2003)

    Google Scholar 

  7. Gaffar, A.A., Mencer, O., Luk, W., Cheung, P.Y.K.: Unifying bit-width optimisation for fixed-point and floating-point designs. In: FCCM, pp. 79–88 (2004)

    Google Scholar 

  8. Humphries, T., Celler, A., Trammer, M.: Improved numerical integration for analytical photon distribution calculation in spect. In: IEEE Symposium Conference on Nuclear Science, vol. 5, pp. 3548–3554 (2007)

    Google Scholar 

  9. Kinsman, A., Nicolici, N.: Finite precision bit-width allocation using SAT-Modulo theory. In: Proc. Design Automation and Test in Europe (DATE), pp. 1106–1111 (2009)

    Google Scholar 

  10. Kum, K.I., Sung, W.: Combined word-length optimization and high-level synthesis of digital signal processing systems, vol. 20(8), pp. 921–930 (2001)

    Google Scholar 

  11. Lee, A., Yau, C., Giles, M.B., Doucet, A., Holmes, C.C.: On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Journal of Computational and Graphical Statistics, 769–789 (2010)

    Google Scholar 

  12. Lee, D.U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., Constantinides, G.A.: Accuracy-guaranteed bit-width optimization. IEEE Trans. on CAD of Integrated Circuits and Systems 25(10), 1990–2000 (2006)

    Article  Google Scholar 

  13. Lee, D.U., Gaffar, A.A., Mencer, O., Luk, W.: Minibit: bit-width optimization via affine arithmetic. In: DAC, pp. 837–840 (2005)

    Google Scholar 

  14. Masserey, A., Rappaz, J., Rozsnyo, R., Swierkosz, M.: Numerical integration of the three-dimensional green kernel for an electromagnetic problem. Journal of Computational Physics 205(1), 48–71 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mencer, O.: ASC: a stream compiler for computing with FPGAs, vol. 25(9), pp. 1603–1617 (2006)

    Google Scholar 

  16. Osborne, W., Coutinho, J., Cheung, R., Luk, W., Mencer, O.: Instrumented multi-stage word-length optimization. In: Proc. International Conference on Field Programmable Technology (FPT), pp. 89–96 (2007)

    Google Scholar 

  17. Osborne, W.G., Cheung, R.C.C., Coutinho, J.G.F., Luk, W., Mencer, O.: Automatic accuracy-guaranteed bit-width optimization for fixed and floating-point systems. In: Proc. International Conference on Field Programmable Logic and Applications (FPL), pp. 617–620 (2007)

    Google Scholar 

  18. Rice, J.R.: A metalgorithm for adaptive quadrature. Journal of the ACM 22, 61–82 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sueli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press (2006)

    Google Scholar 

  20. Tse, A.H.T., Thomas, D., Luk, W.: Design exploration of quadrature methods in option pricing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2011) (accepted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W. (2012). Optimising Performance of Quadrature Methods with Reduced Precision. In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2012. Lecture Notes in Computer Science, vol 7199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28365-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28365-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28364-2

  • Online ISBN: 978-3-642-28365-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics