Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6805))

  • 2009 Accesses

Abstract

Any non-singular plane cubic with a rational point is an elliptic curve, and is therefore birationally equivalent to a curve in Weierstraß form. Such a birational equivalence can be found using generic techniques, but they are computationally quite inefficient.

As early as 1928, Nagell proposed a much simpler procedure to construct that birational equivalence in the particular case of plane cubics, which is implemented in computer algebra packages to this day. However, the procedure fails in even characteristic. We show how the algorithm can be modified to work in any characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cassels, J.W.S.: Lectures on Elliptic Curves. London Mathematical Society Student Texts, vol. 24. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Devigne, J., Joye, M.: Binary huff curves. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 340–355. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 234–250. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Nagell, T.: Sur les propriétés arithmétiques des courbes du premier genre. Acta Math 52(1), 92–106 (1928)

    MathSciNet  Google Scholar 

  5. Stein, W., et al.: Sage Mathematics Software (Version 4.4.2). The Sage Development Team (2010), http://www.sagemath.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tibouchi, M. (2012). A Nagell Algorithm in Any Characteristic. In: Naccache, D. (eds) Cryptography and Security: From Theory to Applications. Lecture Notes in Computer Science, vol 6805. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28368-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28368-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28367-3

  • Online ISBN: 978-3-642-28368-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics