Skip to main content

An Agent-Based Proxemic Model for Pedestrian and Group Dynamics: Motivations and First Experiments

  • Conference paper
Multi-Agent-Based Simulation XII (MABS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7124))

Abstract

The simulation of pedestrian dynamics is a consolidated area of application for agent-based models: successful case studies can be found in the literature and off-the-shelf simulators are commonly employed by end-users, decision makers and consultancy companies. These models, however, generally neglect or treat in a simplistic way aspects like (i) the impact of cultural heterogeneity among individuals and (ii) the effects of the presence of groups and particular relationships among pedestrians. This work is aimed, on one hand, at introducing some fundamental anthropological considerations on which most pedestrian models are based, and in particular Edward T. Hall’s work on proxemics. On the other hand, the paper describes an agent-based model encapsulating in the pedestrian’s behavioural model effects representing both proxemics and a simplified account of influences related to the presence of groups in the crowd. The model is tested in a simple scenario to evaluate the implications of some modeling choices and the presence of groups in the simulated scenario. Results are discussed and compared to experimental observations and to data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Understanding crowd behaviours: Supporting evidence (2009), http://www.cabinetoffice.gov.uk/news/understanding-crowd-behaviours

  2. Axtell, R.: Why Agents? On the Varied Motivations for Agent Computing in the Social Sciences. Center on Social and Economic Dynamics Working Paper 17 (2000)

    Google Scholar 

  3. Bandini, S., Federici, M.L., Vizzari, G.: Situated cellular agents approach to crowd modeling and simulation. Cybernetics and Systems 38(7), 729–753 (2007)

    Article  MATH  Google Scholar 

  4. Bandini, S., Manenti, L., Manzoni, S., Sartori, F.: A knowledge-based approach to crowd classification. In: Proceedings of the 5th International Conference on Pedestrian and Evacuation Dynamics, March 8-10 (2010)

    Google Scholar 

  5. Bandini, S., Rubagotti, F., Vizzari, G., Shimura, K.: An Agent Model of Pedestrian and Group Dynamics: Experiments on Group Cohesion. In: Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS, vol. 6934, pp. 104–116. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Bandini, S., Manzoni, S., Redaelli, S.: Towards an Ontology for Crowds Description: A Proposal Based on Description Logic. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 538–541. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Batty, M.: Agent based pedestrian modeling (editorial). Environment and Planning B: Planning and Design 28, 321–326 (2001)

    Article  Google Scholar 

  8. Batty, M.: Agent-based pedestrian modelling. In: Advanced Spatial Analysis: The CASA Book of GIS, pp. 81–106. Esri Press (2003)

    Google Scholar 

  9. Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bi-directional pedestrian flows. Transportation Research Record 1678, 135–141 (2000)

    Article  Google Scholar 

  10. Blue, V.J., Adler, J.L.: Modeling four-directional pedestrian flows. Transportation Research Record 1710, 20–27 (2000)

    Article  Google Scholar 

  11. Canetti, E.: Crowds and power. Farrar, Straus and Giroux (1984)

    Google Scholar 

  12. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Advances in Complex Systems 12(3), 393–405 (2009)

    Article  Google Scholar 

  13. Christley, S., Zhu, X., Newman, S.A., Alber, M.S.: Multiscale agent-based simulation for chondrogenic pattern formation in vitro. Cybernetics and Systems 38(7), 707–727 (2007)

    Article  MATH  Google Scholar 

  14. Dijkstra, J., Jessurun, J., de Vries, B., Timmermans, H.J.P.: Agent architecture for simulating pedestrians in the built environment. In: International Workshop on Agents in Traffic and Transportation, pp. 8–15 (2006)

    Google Scholar 

  15. Gloor, C., Stucki, P., Nagel, K.: Hybrid Techniques for Pedestrian Simulations. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 581–590. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Hall, E.T.: A system for the notation of proxemic behavior. American Anthropologist 65(5), 1003–1026 (1963), http://www.jstor.org/stable/668580

    Article  Google Scholar 

  17. Hall, E.T.: The Hidden Dimension. Anchor Books (1966)

    Google Scholar 

  18. Helbing, D.: A fluid–dynamic model for the movement of pedestrians. Complex Systems 6(5), 391–415 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  20. Helbing, D., Schweitzer, F., Keltsch, J., Molnár, P.: Active walker model for the formation of human and animal trail systems. Physical Review E 56(3), 2527–2539 (1997)

    Article  Google Scholar 

  21. Henein, C.M., White, T.: Agent-Based Modelling of Forces in Crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 173–184. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Kuligowski, E.D., Gwynne, S.M.V.: The Need for Behavioral Theory in Evacuation Modeling. In: Pedestrian and Evacuation Dynamics 2008, pp. 721–732. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Luck, M., McBurney, P., Sheory, O., Willmott, S. (eds.): Agent Technology: Computing as Interaction. University of Southampton (2005)

    Google Scholar 

  24. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010), http://dx.doi.org/10.1371%2Fjournal.pone.0010047

    Article  Google Scholar 

  25. Murakami, Y., Ishida, T., Kawasoe, T., Hishiyama, R.: Scenario description for multi-agent simulation. In: AAMAS, pp. 369–376. ACM (2003)

    Google Scholar 

  26. Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Trans. Vis. Comput. Graph. 7(2), 152–164 (2001)

    Article  Google Scholar 

  27. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique I France 2(2221), 222–235 (1992)

    Google Scholar 

  28. Nishinari, K., Suma, Y., Yanagisawa, D., Tomoeda, A., Kimura, A., Nishi, R.: Toward Smooth Movement of Crowds. In: Pedestrian and Evacuation Dynamics 2008, pp. 293–308. Springer, Heidelberg (2008)

    Google Scholar 

  29. Okazaki, S.: A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the application of magnetic models. Transactions of A.I.J. (283), 111–119 (1979)

    Google Scholar 

  30. Paris, S., Donikian, S.: Activity-driven populace: A cognitive approach to crowd simulation. IEEE Computer Graphics and Applications 29(4), 34–43 (2009)

    Article  Google Scholar 

  31. Pengfei, X., Lees, M., Nan, H., Viswanthatn, T.V.: Validation of Agent-Based Simulation through Human Computation: An Example of Crowd Simulation. In: Villatoro, D., Sabater-Mir, J., Sichman, J.S. (eds.) MABS 2011. LNCS (LNAI), vol. 7124, pp. 90–102. Springer, Heidelberg (2011)

    Google Scholar 

  32. Qiu, F., Hu, X.: Modeling group structures in pedestrian crowd simulation. Simulation Modelling Practice and Theory 18(2), 190–205 (2010)

    Article  MathSciNet  Google Scholar 

  33. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: SIGGRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34. ACM, New York (1987)

    Chapter  Google Scholar 

  34. Sarmady, S., Haron, F., Talib, A.Z.H.: Modeling groups of pedestrians in least effort crowd movements using cellular automata. In: Al-Dabass, D., Triweko, R., Susanto, S., Abraham, A. (eds.) Asia International Conference on Modelling and Simulation, pp. 520–525. IEEE Computer Society (2009)

    Google Scholar 

  35. Schadschneider, A., Kirchner, A., Nishinari, K.: Ca Approach to Collective Phenomena in Pedestrian Dynamics. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 239–248. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  36. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: Empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 3142–3176. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  37. Schreckenberg, M., Sharma, S.D. (eds.): Pedestrian and Evacuation Dynamics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  38. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007)

    Article  Google Scholar 

  39. Toyama, M.C., Bazzan, A.L.C., da Silva, R.: An agent-based simulation of pedestrian dynamics: from lane formation to auditorium evacuation. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 108–110. ACM Press (2006)

    Google Scholar 

  40. Wąs, J.: Crowd Dynamics Modeling in the Light of Proxemic Theories. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 683–688. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  41. Willis, A., Gjersoe, N., Havard, C., Kerridge, J., Kukla, R.: Human movement behaviour in urban spaces: Implications for the design and modelling of effective pedestrian environments. Environment and Planning B 31(6), 805–828 (2004)

    Article  Google Scholar 

  42. Xu, S., Duh, H.B.L.: A simulation of bonding effects and their impacts on pedestrian dynamics. IEEE Transactions on Intelligent Transportation Systems 11(1), 153–161 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manenti, L., Manzoni, S., Vizzari, G., Ohtsuka, K., Shimura, K. (2012). An Agent-Based Proxemic Model for Pedestrian and Group Dynamics: Motivations and First Experiments. In: Villatoro, D., Sabater-Mir, J., Sichman, J.S. (eds) Multi-Agent-Based Simulation XII. MABS 2011. Lecture Notes in Computer Science(), vol 7124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28400-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28400-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28399-4

  • Online ISBN: 978-3-642-28400-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics