Abstract
This chapter presents a Gabor-DCT Features (GDF) method on color facial parts for face recognition. The novelty of the GDF method is fourfold. First, four discriminative facial parts are used for dealing with image variations. Second, the Gabor filtered images of each facial part are grouped together based on adjacent scales and orientations to form a Multiple Scale and Multiple Orientation Gabor Image Representation (MSMO-GIR). Third, each MSMO-GIR first undergoes Discrete Cosine Transform (DCT) with frequency domain masking for dimensionality and redundancy reduction, and then is subject to discriminant analysis for extracting the Gabor-DCT features. Finally, at the decision level, the similarity scores derived from all the facial parts as well as from the Gabor filtered whole face image are fused together by means of the sum rule. Experiments on the Face Recognition Grand Challenge (FRGC) version 2 Experiment 4 and the CMU Multi-PIE database show the feasibility of the proposed GDF method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional cortical filters. J. Optical Soc. Am. 2(7), 1160–1169 (1985)
Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20, 847–856 (1980)
Ekenel, H.K., Stiefelhagen, R.: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization. In: Proc. the 2006 International Conference on Computer Vision and Pattern Recognition Workshop, pp. 17–22 (June 2006)
Finlayson, G.D., Chatterjee, S.S., Funt, B.V.: Color Angular Indexing. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 16–27. Springer, Heidelberg (1996)
Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions Pattern Analysis and Machine Intelligence 23(11), 1209–1221 (2001)
Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press (1990)
Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Transactions Pattern Analysis and Machine Intelligence 23(12), 1338–1350 (2001)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall (2002)
Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and Vision Computing 28 (2010)
Hafed, Z.M., Levine, M.D.: Face recognition using the discrete cosine transform. International Journal of Computer Vision 43(3), 167–188 (2001)
Healey, G., Slater, D.A.: Global color constancy: Recognition of objects by use of illumination invariant properties of color distributions. Journal of the Optical Society of America A 11(11), 3003–3010 (1994)
Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. In: Neural Information Processing Systems (2001)
Heusch, G., Marcel, S.: A novel statistical generative model dedicated to face recognition. Image and Vision Computing 28(1), 101–110 (2010)
Hwang, W., Park, G., Lee, J., Kee, S.C.: Multiple face model of hybrid fourier feature for large face image set. In: Proc. 2006 IEEE Conf. Computer Vision and Pattern Recognition, CVPR 2006 (2006)
Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions Computers 42(3), 300–311 (1993)
Leibe, B., Ettlin, A., Schiele, B.: Learning semantic object parts for object categorization. Image and Vision Computing 26, 15–26 (2008)
Liu, C.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Transactions Pattern Analysis and Machine Intelligence 26(5), 572–581 (2004)
Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)
Liu, C.: The Bayes decision rule induced similarity measures. IEEE Transactions Pattern Analysis and Machine Intelligence 29(6), 1086–1090 (2007)
Liu, C.: Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Transactions on Information Forensics and Security 3(2), 213–222 (2008)
Liu, C., Wechsler, H.: Robust coding schemes for indexing and retrieval from large face databases. IEEE Transactions on Image Processing 9(1), 132–137 (2000)
Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing 11(4), 467–476 (2002)
Liu, C., Yang, J.: ICA color space for pattern recognition. IEEE Transactions on Neural Networks 20(2), 248–257 (2009)
Liu, Z., Liu, C.: Fusion of the complementary discrete cosine features in the yiq color space for face recognition. Computer Vision and Image Understanding 111(3), 249–262 (2008)
Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Transactions Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)
Lyons, M.J., Budynek, J., Plante, A., Akamatsu, S.: Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis. In: Proc. the Fourth IEEE Internatinoal Conference on Automatic Face and Gestrure Recognition (2000)
Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2005)
Shih, P., Liu, C.: Comparative assessment of content-based face image retrieval in different color spaces. International Journal of Pattern Recognition and Artificial Intelligence 19(7), 873–893 (2005)
Singh, R., Vatsa, M., Noore, A.: Face recognition with disguise and single gallery images. Image and Vision Computing 27(3), 245–257 (2009)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)
Tan, T.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Transactions Pattern Analysis and Machine Intelligence 27(2), 178–193 (2001)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19(6) (2010)
Tistarelli, M., Bicego, M., Grosso, E.: Dynamic face recognition: From human to machine vision. Image and Vision Computing 27(3), 222–232 (2009)
Torres, L., Reutter, J.Y., Lorente, L.: The importance of color information in face recognition. In: Proc. IEEE Int. Conf. Image Processing, October 24-28 (1999)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 13(1), 71–86 (1991)
Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2) (2004)
Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)
Xie, C., Kumar, V.: Comparison of kernel class-dependence feature analysis (kcfa) with kernel discriminant analysis (kda) for face recognition. In: Proc. IEEE on Biometrics: Theory, Applicationa and Systems, September 27-29 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2012 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Liu, Z., Liu, C. (2012). Gabor-DCT Features with Application to Face Recognition. In: Cross Disciplinary Biometric Systems. Intelligent Systems Reference Library, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28457-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-28457-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28456-4
Online ISBN: 978-3-642-28457-1
eBook Packages: EngineeringEngineering (R0)