Skip to main content

Gabor-DCT Features with Application to Face Recognition

  • Chapter
Cross Disciplinary Biometric Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 37))

  • 935 Accesses

Abstract

This chapter presents a Gabor-DCT Features (GDF) method on color facial parts for face recognition. The novelty of the GDF method is fourfold. First, four discriminative facial parts are used for dealing with image variations. Second, the Gabor filtered images of each facial part are grouped together based on adjacent scales and orientations to form a Multiple Scale and Multiple Orientation Gabor Image Representation (MSMO-GIR). Third, each MSMO-GIR first undergoes Discrete Cosine Transform (DCT) with frequency domain masking for dimensionality and redundancy reduction, and then is subject to discriminant analysis for extracting the Gabor-DCT features. Finally, at the decision level, the similarity scores derived from all the facial parts as well as from the Gabor filtered whole face image are fused together by means of the sum rule. Experiments on the Face Recognition Grand Challenge (FRGC) version 2 Experiment 4 and the CMU Multi-PIE database show the feasibility of the proposed GDF method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  2. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional cortical filters. J. Optical Soc. Am. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  3. Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20, 847–856 (1980)

    Article  Google Scholar 

  4. Ekenel, H.K., Stiefelhagen, R.: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization. In: Proc. the 2006 International Conference on Computer Vision and Pattern Recognition Workshop, pp. 17–22 (June 2006)

    Google Scholar 

  5. Finlayson, G.D., Chatterjee, S.S., Funt, B.V.: Color Angular Indexing. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 16–27. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions Pattern Analysis and Machine Intelligence 23(11), 1209–1221 (2001)

    Article  Google Scholar 

  7. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press (1990)

    Google Scholar 

  8. Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Transactions Pattern Analysis and Machine Intelligence 23(12), 1338–1350 (2001)

    Article  Google Scholar 

  9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall (2002)

    Google Scholar 

  10. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and Vision Computing 28 (2010)

    Google Scholar 

  11. Hafed, Z.M., Levine, M.D.: Face recognition using the discrete cosine transform. International Journal of Computer Vision 43(3), 167–188 (2001)

    Article  MATH  Google Scholar 

  12. Healey, G., Slater, D.A.: Global color constancy: Recognition of objects by use of illumination invariant properties of color distributions. Journal of the Optical Society of America A 11(11), 3003–3010 (1994)

    Article  Google Scholar 

  13. Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by learning and combining object parts. In: Neural Information Processing Systems (2001)

    Google Scholar 

  14. Heusch, G., Marcel, S.: A novel statistical generative model dedicated to face recognition. Image and Vision Computing 28(1), 101–110 (2010)

    Article  Google Scholar 

  15. Hwang, W., Park, G., Lee, J., Kee, S.C.: Multiple face model of hybrid fourier feature for large face image set. In: Proc. 2006 IEEE Conf. Computer Vision and Pattern Recognition, CVPR 2006 (2006)

    Google Scholar 

  16. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions Computers 42(3), 300–311 (1993)

    Article  Google Scholar 

  17. Leibe, B., Ettlin, A., Schiele, B.: Learning semantic object parts for object categorization. Image and Vision Computing 26, 15–26 (2008)

    Article  Google Scholar 

  18. Liu, C.: Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Transactions Pattern Analysis and Machine Intelligence 26(5), 572–581 (2004)

    Article  Google Scholar 

  19. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)

    Article  Google Scholar 

  20. Liu, C.: The Bayes decision rule induced similarity measures. IEEE Transactions Pattern Analysis and Machine Intelligence 29(6), 1086–1090 (2007)

    Article  Google Scholar 

  21. Liu, C.: Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Transactions on Information Forensics and Security 3(2), 213–222 (2008)

    Article  Google Scholar 

  22. Liu, C., Wechsler, H.: Robust coding schemes for indexing and retrieval from large face databases. IEEE Transactions on Image Processing 9(1), 132–137 (2000)

    Article  Google Scholar 

  23. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced Fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing 11(4), 467–476 (2002)

    Article  Google Scholar 

  24. Liu, C., Yang, J.: ICA color space for pattern recognition. IEEE Transactions on Neural Networks 20(2), 248–257 (2009)

    Article  Google Scholar 

  25. Liu, Z., Liu, C.: Fusion of the complementary discrete cosine features in the yiq color space for face recognition. Computer Vision and Image Understanding 111(3), 249–262 (2008)

    Article  Google Scholar 

  26. Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Transactions Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)

    Article  Google Scholar 

  27. Lyons, M.J., Budynek, J., Plante, A., Akamatsu, S.: Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis. In: Proc. the Fourth IEEE Internatinoal Conference on Automatic Face and Gestrure Recognition (2000)

    Google Scholar 

  28. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  29. Shih, P., Liu, C.: Comparative assessment of content-based face image retrieval in different color spaces. International Journal of Pattern Recognition and Artificial Intelligence 19(7), 873–893 (2005)

    Article  Google Scholar 

  30. Singh, R., Vatsa, M., Noore, A.: Face recognition with disguise and single gallery images. Image and Vision Computing 27(3), 245–257 (2009)

    Article  Google Scholar 

  31. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  32. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  33. Tan, T.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Transactions Pattern Analysis and Machine Intelligence 27(2), 178–193 (2001)

    Article  Google Scholar 

  34. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19(6) (2010)

    Google Scholar 

  35. Tistarelli, M., Bicego, M., Grosso, E.: Dynamic face recognition: From human to machine vision. Image and Vision Computing 27(3), 222–232 (2009)

    Article  Google Scholar 

  36. Torres, L., Reutter, J.Y., Lorente, L.: The importance of color information in face recognition. In: Proc. IEEE Int. Conf. Image Processing, October 24-28 (1999)

    Google Scholar 

  37. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 13(1), 71–86 (1991)

    Article  Google Scholar 

  38. Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57(2) (2004)

    Google Scholar 

  39. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

  40. Xie, C., Kumar, V.: Comparison of kernel class-dependence feature analysis (kcfa) with kernel discriminant analysis (kda) for face recognition. In: Proc. IEEE on Biometrics: Theory, Applicationa and Systems, September 27-29 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Liu, Z., Liu, C. (2012). Gabor-DCT Features with Application to Face Recognition. In: Cross Disciplinary Biometric Systems. Intelligent Systems Reference Library, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28457-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28457-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28456-4

  • Online ISBN: 978-3-642-28457-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics