Skip to main content

Wavelet Features for 3D Face Recognition

  • Chapter
Cross Disciplinary Biometric Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 37))

  • 955 Accesses

Abstract

A fusion framework is introduced in this chapter to demonstrate the feasibility of integrating 2D and 3D face recognition systems. Specifically, four convolution filters based on wavelet functions (Gaussian derivative, Morlet, complex Morlet, and complex frequency B-spline) are applied to extract the convolution features from the 2D and 3D image modalities to capture the intensity texture and curvature shape, respectively. The convolution features are then used to compute two separate similarity measures for the 2D and 3D modalities, which are later linearly fused to calculate the final similarity measure. The feasibility of the proposed method is demonstrated using the Face Recognition Grand Challenge (FRGC) version 2 Experiment 3, which contains 4,950 2D color images (943 controlled and 4,007 uncontrolled) and 4,950 3D recordings. The experimental results show that the Gaussian derivative convolution filter extracts the most discriminating features from the 3D modality among the four filters, and the complex frequency B-spline convolution filter outperforms the other filters when the 2D modality is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: A survey. Pattern Recognition Letters 28(14), 1885–1906 (2007)

    Article  Google Scholar 

  2. Akansu, A.N., Smith, M.J.T.: Subband and Wavelet Transforms: Design and Applications. Springer (1995)

    Google Scholar 

  3. Bauer, S., Wasza, J., Müller, K., Hornegger, J.: 4D photogeometric face recognition with time-of-flight sensors. In: Proc. of 2011 IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, January 5-7, pp. 196–203 (2011)

    Google Scholar 

  4. Beumier, C., Acheroy, M.: Face verification from 3D and gray level cues. Pattern Recognition Letters 22, 1321–1329 (2001)

    Article  MATH  Google Scholar 

  5. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant 3D face recognition. In: Proc. Audio and Video-Based Person Authentication (2003)

    Google Scholar 

  6. Chang, K.I., Bowyer, K.W., Flynn, P.J.: Face recognition using 2D and 3D facial data. In: Proc. ACM Workshop Multimodal User Authentication, pp. 25–32 (December 2003)

    Google Scholar 

  7. Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2D+3D face biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 27(4), 619–624 (2005)

    Article  Google Scholar 

  8. Chua, C., Jarvis, R.: Point signature: A new representation for 3D object recognition. International Journal of Computer Vision 25(1), 63–85 (1997)

    Article  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992)

    Google Scholar 

  10. Demanet, L., Vandergheynst, P.: Gabor wavelets on the sphere. In: Proc. Wavelets X Conference, San Diego, California (2003)

    Google Scholar 

  11. Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proc. Computer Vision and Pattern Recognition, pp. 168–174 (2001)

    Google Scholar 

  12. Foufoula-Georgiou, E., Kumar, P.: Wavelets in Geophysics. Wavelet Analysis and Its Applications, vol. 4. Academic Press (1994)

    Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall (2001)

    Google Scholar 

  14. Gordon, G.: Face recognition based on depth and curvature features. In: SPIE Proc.: Geometric Methods in Computer Vision, vol. 1570, pp. 234–247 (1991)

    Google Scholar 

  15. Hernandez, E., Weiss, G.L.: A First Course on Wavelets. CRC-Press (1996)

    Google Scholar 

  16. Hesher, C., Srivastava, A., Erlebacher, G.: A novel technique for face recognition using range images. In: Proc. Seventh International Symposium on Signal Processing and Its Applications (2003)

    Google Scholar 

  17. Islam, S.M.S., Bennamoun, M., Owens, R., Davies, R.: Biometric approaches of 2D-3D ear and face: A survey. In: Advances in Computer and Information Sciences and Engineering, pp. 509–514 (2008)

    Google Scholar 

  18. Ji, Y., Chang, K.H., Hung, C.C.: Efficient edge detection and object segmentation using Gabor filters. In: Proc. 42nd Annual Southeast Regional Conference, Alabama (2004)

    Google Scholar 

  19. Lao, S., Sumi, Y., Kawade, M., Tomita, F.: 3D template matching for pose invariant face recognition using 3D facial model built with isoluminance line based stereo system. In: Proc. International Conference on Pattern Recognition, vol. 2, pp. 911–916 (2000)

    Google Scholar 

  20. Lee, Y., Park, K., Shim, J., Yi, T.: 3D face recognition using statistical multiple features for the local depth information. In: Proc. 16th International Conference on Vision Interface (June 2003)

    Google Scholar 

  21. Liu, C.: Enhanced independent component analysis and its application to content based face image retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 1117–1127 (2004)

    Article  Google Scholar 

  22. Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 725–737 (2006)

    Article  Google Scholar 

  23. Liu, C.: The Bayes decision rule induced similarity measures. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1086–1090 (2007)

    Article  Google Scholar 

  24. Liu, C.: Learning the uncorrelated, independent, and discriminating color spaces for face recognition. IEEE Transactions on Information Forensics and Security 3(2), 213–222 (2008)

    Article  Google Scholar 

  25. Liu, C., Yang, J.: ICA color space for pattern recognition. IEEE Transactions on Neural Networks 20(2), 248–257 (2009)

    Article  Google Scholar 

  26. Louis, A.K., Maass, D., Rieder, A.: Wavelets: Theory and Applications. John Wiley & Sons, Inc. (1997)

    Google Scholar 

  27. Manmatha, R., Rothfeder, J.L.: A scale space approach for automatically segmenting words from historical handwritten documents. IEEE Trans. Pattern Analysis and Machine Intelligence 27(8), 1212–1225 (2005)

    Article  Google Scholar 

  28. Medioni, G., Waupotitsch, R.: Face recognition and modeling in 3D. In: Proc. IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 232–233 (October 2003)

    Google Scholar 

  29. Medioni, G., Waupotitsch, R.: Face recognition and modeling in 3D. In: Proc. IEEE International Workshop on Analysis and Modeling of Faces and Gestures (October 2003)

    Google Scholar 

  30. Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 29(11), 1927–1943 (2007)

    Article  Google Scholar 

  31. Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based face-recognition a lgorithms. Perception 30, 303–321 (2001)

    Article  Google Scholar 

  32. Moreno, A.B., Sanchez, A., Velez, J.F., Diaz, F.J.: Face recognition using 3D surface-extracted descriptors. In: Proc. Irish Machine Vision and Image Processing Conference (IMVIP 2003) (September 2003)

    Google Scholar 

  33. Moreno, P., Bernardino, A., Santos-Victor, J.: Gabor parameter selection for local feature detection. In: Proc. 2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal, June 7-9 (2005)

    Google Scholar 

  34. Pears, N., Heseltine, T., Romero, M.: From 3D point clouds to pose-normalised depth maps. International Journal of Computer Vision 89(2-3), 152–176 (2010)

    Article  Google Scholar 

  35. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: Proc. Computer Vision and Pattern Recognition, San Diego, June 20-25, pp. 947–954 (2005)

    Google Scholar 

  36. Sipiran, I., Bustos, B.: A robust 3D interest points detector based on harris operator. In: Proc. Eurographics 2010 Workshop on 3D Object Retrieval, Norrköping, Sweden, pp. 7–14 (May 2, 2010)

    Google Scholar 

  37. Teolis, A.: Computational signal processing with wavelets. Birkhäuser (1998)

    Google Scholar 

  38. Tsalakanidou, F., Malassiotis, S., Strintzis, M.: Integration of 2D and 3D images for enhanced face authentication. In: Proc. Sixth International Conference on Automated Face and Gesture Recognition, pp. 266–271 (May 2004)

    Google Scholar 

  39. Wang, Y., Chua, C., Ho, Y.: Facial feature detection and face recognition from 2D and 3D images. Pattern Recognition Letters 23, 1191–1202 (2002)

    Article  MATH  Google Scholar 

  40. Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peichung Shih .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Shih, P., Liu, C. (2012). Wavelet Features for 3D Face Recognition. In: Cross Disciplinary Biometric Systems. Intelligent Systems Reference Library, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28457-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28457-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28456-4

  • Online ISBN: 978-3-642-28457-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics