Abstract
In this paper we present the first Content-Based Image Retrieval (CBIR) framework in the field of in vivo endomicroscopy, with applications ranging from training support to diagnosis support. We propose to adjust the standard Bag-of-Visual-Words method for the retrieval of endomicroscopic videos. Retrieval performance is evaluated both indirectly from a classification point-of-view, and directly with respect to a perceived similarity ground truth. The proposed method significantly outperforms, on two different endomicroscopy databases, several state-of-the-art methods in CBIR. With the aim of building a self-training simulator, we use retrieval results to estimate the interpretation difficulty experienced by the endoscopists. Finally, by incorporating clinical knowledge about perceived similarity and endomicroscopy semantics, we are able: 1) to learn an adequate visual similarity distance and 2) to build visual-word-based semantic signatures that extract, from low-level visual features, a higher-level clinical knowledge expressed in the endoscopist own language.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 591–606 (2009)
Zhang, J., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73, 213–238 (2007)
Syeda-Mahmood, T.F., Wang, F., Beymer, D.: Recognition of object categories using affine kernels. In: Multimedia Information Retrieval, pp. 15–24 (2010)
André, B., Vercauteren, T., Buchner, A.M., Wallace, M.B., Ayache, N.: A smart atlas for endomicroscopy using automated video retrieval. Medical Image Analysis 15(4), 460–476 (2011)
Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: Robust mosaicing with correction of motion distortions and tissue deformation for in vivo fibered microscopy. Medical Image Analysis 10(5), 673–692 (2006)
MĂ¼ller, H., Kalpathy-Cramer, J., Eggel, I., Bedrick, S., Reisetter, J., Kahn, C.E., Hersh, W.R.: Overview of the clef 2010 medical image retrieval track. In: CLEF (Notebook Papers/LABs/Workshops) (2010)
AkgĂ¼l, C.B., Rubin, D.L., Napel, S., Beaulieu, C.F., Greenspan, H., Acar, B.: Content-based image retrieval in radiology: Current status and future directions. Journal of Digital Imaging 24(2), 208–222 (2011)
Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of the IEEE 67, 786–804 (1979)
Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision 43, 29–44 (2001)
Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)
André, B., Vercauteren, T., Buchner, A.M., Wallace, M.B., Ayache, N.: Retrieval Evaluation and Distance Learning from Perceived Similarity between Endomicroscopy Videos. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 297–304. Springer, Heidelberg (2011)
André, B., Vercauteren, T., Buchner, A.M., Shahid, M.W., Wallace, M.B., Ayache, N.: An Image Retrieval Approach to Setup Difficulty Levels in Training Systems for Endomicroscopy Diagnosis. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 480–487. Springer, Heidelberg (2010)
Kiesslich, R., Burg, J., Vieth, M., Gnaendiger, J., Enders, M., Delaney, P., Polglase, A., McLaren, W., Janell, D., Thomas, S., Nafe, B., Galle, P.R., Neurath, M.F.: Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127(3), 706–713 (2004)
Rasiwasia, N., Moreno, P.J., Vasconcelos, N.: Bridging the gap: Query by semantic example. IEEE Transactions on Multimedia 9(5), 923–938 (2007)
Kwitt, R., Rasiwasia, N., Vasconcelos, N., Uhl, A., Häfner, M., Wrba, F.: Learning Pit Pattern Concepts for Gastroenterological Training. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 280–287. Springer, Heidelberg (2011)
André, B., Vercauteren, T., Buchner, A.M., Wallace, M.B., Ayache, N.: Learning semantic and visual similarity for endomicroscopy video retrieval. INRIA Technical Report RR-7722, INRIA (August 2011)
Philbin, J., Isard, M., Sivic, J., Zisserman, A.: Descriptor learning for efficient retrieval. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 677–691. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
AndrĂ©, B., Vercauteren, T., Ayache, N. (2012). Content-Based Retrieval in Endomicroscopy: Toward an Efficient Smart Atlas for Clinical Diagnosis. In: MĂ¼ller, H., Greenspan, H., Syeda-Mahmood, T. (eds) Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2011. Lecture Notes in Computer Science, vol 7075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28460-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-28460-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28459-5
Online ISBN: 978-3-642-28460-1
eBook Packages: Computer ScienceComputer Science (R0)