Abstract
The present work introduces a 2D medical image retrieval system which employs interest points derived from superpixels in a bags of visual words (BVW) framework. BVWs rely on stable interest points so that the local descriptors can be clustered into representative, discriminative prototypes (the visual words). We show that using the centers of mass of superpixels as interest points yields higher retrieval accuracy when compared to using Difference of Gaussians (DoG) or a dense grid of interest points. Evaluation is performed on two data sets. The ImageCLEF 2009 data set of 14.400 radiographs is used in a categorization setting and the results compare favorable to more specialized methods. The second set contains 13 thorax CTs and is used in a hybrid 2D/3D localization task, localizing the axial position of the lung through the retrieval of representative 2D slices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
André, B., Vercauteren, T., Perchant, A., Wallace, M.B., Buchner, A.M., Ayache, N.: Endomicroscopic image retrieval and classification using invariant visual features. In: Proceedings of the Sixth IEEE International Symposium on Biomedical Imaging 2009 (ISBI 2009), pp. 346–349. IEEE, Boston (2009)
André, B., Vercauteren, T., Wallace, M.B., Buchner, A.M., Ayache, N.: Endomicroscopic video retrieval using mosaicing and visual words. In: Proceedings of the Seventh IEEE International Symposium on Biomedical Imaging 2010 (ISBI 2010), pp. 1419–1422. IEEE (2010)
Avni, U., Goldberger, J., Greenspan, H.: Addressing the ImageCLEF 2009 challenge using a patch-based visual words representation. In: Working Notes for the CLEF 2009 Workshop. The Cross-Language Evaluation Forum (CLEF), Corfu, Greece (2009)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: ImageCLEF 2009 Medical Image Annotation Task: PCTs for Hierarchical Multi-Label Classification. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 231–238. Springer, Heidelberg (2010)
Feulner, J., Zhou, S.K., Seifert, S., Cavallaro, A., Hornegger, J., Comaniciu, D.: Estimating the body portion of CT volumes by matching histograms of visual words. In: Medical Imaging 2009: Image Processing (Proceedings Volume), vol. 7259, p. 72591. SPIE (2009)
Lehmann, T.M., Schubert, H., Keysers, D., Kohnen, M., Wein, B.B.: The IRMA code for unique classification of medical images. In: Medical Imaging 2003: PACS and Integrated Medical Information Systems: Design and Evaluation (Proceedings Volume), vol. 5033, pp. 440–451. SPIE (2003)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)
Tommasi, T., Caputo, B., Welter, P., Güld, M.O., Deserno, T.M.: Overview of the CLEF 2009 Medical Image Annotation Track. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 85–93. Springer, Heidelberg (2010)
Ünay, D., Soldea, O., Akyüz, S., Çetin, M., Erçil, A.: Medical image retrieval and automatic annotation: VPA-SABANCI at ImageCLEF 2009. In: Working Notes for the CLEF 2009 Workshop. The Cross-Language Evaluation Forum (CLEF), Corfu, Greece (2009)
Vedaldi, A., Fulkerson, B.: Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1469–1472. ACM, New York (2010)
Wildenauer, H., Mičušík, B., Vincze, M.: Efficient Texture Representation using Multi-Scale Regions. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 65–74. Springer, Heidelberg (2007)
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. In: Conference on Computer Vision and Pattern Recognition Workshop, p. 13 (June 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haas, S., Donner, R., Burner, A., Holzer, M., Langs, G. (2012). Superpixel-Based Interest Points for Effective Bags of Visual Words Medical Image Retrieval. In: Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds) Medical Content-Based Retrieval for Clinical Decision Support. MCBR-CDS 2011. Lecture Notes in Computer Science, vol 7075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28460-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-28460-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28459-5
Online ISBN: 978-3-642-28460-1
eBook Packages: Computer ScienceComputer Science (R0)