Skip to main content

Advanced Line Visualization for HARDI

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2012

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1733 Accesses

Abstract

Diffusion imaging is a non-invasive technique providing information about neuronal connections. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to model the diffusion pattern in more detail. Tractography approaches reconstruct fiber pathways and result in line representations, approximating the underlying diffusion behavior. However, these line visualizations often suffer from visual clutter and weak depth perception more than reconstructions resulting from DTI, since multiple fibers potentially run within one voxel. In this approach illustrative rendering methods such as depth-dependent halos and ambient occlusion for line data are presented in combination with crucial tract information such as the direction and integrity for HARDI-based fiber representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Merhof D, Sonntag M, Enders F, et al. Hybrid visualization for white matter tracts using triangle strips and point sprites. IEEE Trans Vis Comput Graph. 2006;12:1181–88.

    Article  Google Scholar 

  2. Everts M, Bekker H, Roerdink J, et al. Depth-dependent halos: illustrative rendering of dense line data. IEEE Trans Vis Comput Graph. 2009;15:1299–306.

    Article  Google Scholar 

  3. Otten R, Bartroli AV, van de Wetering HMM. Illustrative white matter fiber bundles. Comput Graph Forum. 2010;29(3):1013–22.

    Article  Google Scholar 

  4. Poupon C, Poupon F, Allirol L, et al. A database dedicated to anatomo-functional study of human brain connectivity. 12th HBM Neuroimage. 2006;12(646).

    Google Scholar 

  5. Rottger D, Seib V, Muller S. Distance-based tractography in high angular resolution diffusion imaging. The Visual Comput. 2011;27:729–39.

    Article  Google Scholar 

  6. Rottger D, Dudai D, Merhof D, et al. ISMI: a Classification Index for High Angular Resolution Diffusion Imaging. Proc SPIE. 2012.

    Google Scholar 

  7. Mittring M. Finding next gen: CryEngine 2. ACM SIGGRAPH 2007 Courses. 2007; p. 97–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Röttger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Röttger, D., Denter, C., Müller, S. (2012). Advanced Line Visualization for HARDI. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28502-8_28

Download citation

Publish with us

Policies and ethics