Skip to main content

Evaluation of Algorithms for Lung Fissure Segmentation in CT Images

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2012

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1733 Accesses

Abstract

Automatic detection of the interlobular lung fissures is a crucial task in computer aided diagnostics and intervention planning, and required for example for determination of disease spreading or pulmonary parenchyma quantification. Moreover, it is usually the first step of a subsequent segmentation of the five lung lobes. Due to the clinical relevance, several approaches for fissure detection have been proposed. They aim at finding plane-like structures in the images by analyzing the eigenvalues of the Hessian matrix. Furthermore, these values can be used as features for supervised fissure detection. In this work, two approaches for supervised an three for unsupervised fissure detection are evaluated and compared to each other. The evaluation is based on thoracic CT images acquired with different radiation doses and different resolutions. The experiments show that each approach has advantages and the choice should be made depending on the specific requirements of following algorithm steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lassen B, Kuhnigk JM, Friman O, et al. Automatic segmentation of lung lobes in CT images based on fissures, vessels, and bronchi. In: Proc IEEE ISBI; 2010. p. 560–563.

    Google Scholar 

  2. Pu J, Zheng B, Leader JK, et al. Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE Trans Med Imag. 2009;28(12):1986–96.

    Article  Google Scholar 

  3. van Rikxoort EM, Prokop M, de Hoop BJ, et al. Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans Med Imag. 2010;29(6):1286–96.

    Article  Google Scholar 

  4. Schmidt-Richberg A, Ehrhardt J, Wilms M, et al. Pulmonary lobe segmentation with level sets. In: Proc SPIE; 2012. (in press).

    Google Scholar 

  5. Wiemker R, Bulow T, Blaffert T. Unsupervised extraction of the pulmonary in- terlobar fissures from high resolution thoracic CT data. In: Proc CARS; 2005. p. 1121–26.

    Google Scholar 

  6. Antiga L. Generalizing vesselness with respect to dimensionality and shape. Insight J. 2007.

    Google Scholar 

  7. van Rikxoort EM, van Ginneken B, Klik M, et al. Supervised enhancement filters: application to fissure detection in chest CT scans. IEEE Trans Med Imag. 2008;27(1):1–10.

    Article  Google Scholar 

  8. Frangi AF, Frangi RF, Niessen WJ, et al. Multiscale vessel enhancement filtering. In: Proc MICCAI; 1998. p. 130–7.

    Google Scholar 

  9. Ross JC, San’ Jose Est’par R, Kindlmann G, et al. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation. In: Proc MICCAI; 2010. p. 163–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Schmidt-Richberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt-Richberg, A., Ehrhardt, J., Wilms, M., Werner, R., Handels, H. (2012). Evaluation of Algorithms for Lung Fissure Segmentation in CT Images. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28502-8_36

Download citation

Publish with us

Policies and ethics