Skip to main content

Combined Model-Based and Region-Adaptive 3D Segmentation and 3D Co-Localization Analysis of Heterochromatin Foci

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2012

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

The nuclear organization of euchromatin and heterochromatin is important for genome regulation and cell function. Therefore, the analysis of heterochromatin formation and maintenance is an important topic in biological research. We introduce an automatic approach or analyzing heterochromatin foci in 3D multi-channel fluorescence microscopy images. The approach combines model-based segmentation with region-adaptive segmentation and performs a 3D co-localization analysis in different nuclear regions. Our approach has been successfully applied to 275 3D two-channel fluorescence microscopy images of mouse fibroblast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Müller KP, Erdel F, Caudron-Herger M, et al. Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy. Biophys J. 2009;97(11):2876–85.

    Article  Google Scholar 

  2. Jost KL, Haase S, Smeets D, et al. 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res. 2011;39(17):e113.

    Article  Google Scholar 

  3. Andrey P, Kieu K, Kress C, et al. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol. 2010;6(7):e1000853.

    Article  MathSciNet  Google Scholar 

  4. Ivashkevich AN, Martin OA, Smith AJ, et al. H2AX foci as a measure of DNA damage: A computational approach to automatic analysis. Mutat Res. 2011;711(1- 2):49–60.

    Google Scholar 

  5. Böcker W, Iliakis G. Computational methods for analysis of foci: Validation for radiation-induced y-H2AX foci in human cells. Radiat Res. 2006;165(1):113–24.

    Article  Google Scholar 

  6. Dzyubachyk O, Essers J, van Cappellen WA, et al. Automated analysis of time- lapse fluorescence microscopy images: from live cell images to intracellular foci. Bioinformatics. 2010;26(19):2424–30.

    Article  Google Scholar 

  7. Thomann D, Rines DR, Sorger PK, et al. Automatic fluorescent tag detection in 3D with super-resolution: application to the analysis of chromosome movement. J Microsc. 2002;208:49–64.

    Article  MathSciNet  Google Scholar 

  8. Wörz S, Sander P, Pfannmoller M, et al. 3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of human soft tissue tumors. IEEE Trans Med Imaging. 2010;29(8):1474–84.

    Article  Google Scholar 

  9. Ritter N, Cooper J. New resolution independent measures of circularity. J Math Imaging Vis. 2009;35(2):117–27.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Eck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eck, S., Rohr, K., Müller-Ott, K., Rippe, K., Wörz, S. (2012). Combined Model-Based and Region-Adaptive 3D Segmentation and 3D Co-Localization Analysis of Heterochromatin Foci. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28502-8_4

Download citation

Publish with us

Policies and ethics