Skip to main content

Estimating Blood Flow Based on 2D Angiographic Image Sequences

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2012

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

The assessment of hemodynamics based on medical image data represents an attractive means in order to enhance diagnostic imaging capabilities, to evaluate clinical outcomes of therapies focusing on the patient’s vascular system, as well as to guide minimally invasive interventional procedures in the catheter lab. We present a first evaluation along with comparisons of algorithmic approaches towards the quantitative determination of blood flow based on 2D angiography image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oppelt A. Imaging Systems for Medical Diagnostics. Fundamentals, Technical Solutions and Applications for Systems applying Ionizing Radiation, Nuclear Magnetic Resonance and Ultrasound. Erlangen: Publicis Kommunikations Agentur GmbH, GWA; 2005.

    Google Scholar 

  2. Strother C, Bender F, Deuerling-Zheng Y, et al. Parametric color coding of digital subtraction angiography. Am J Neuroradiol. 2010; p. 919–24.

    Google Scholar 

  3. Shpilfoygel D, Close A, Valentino J, et al. X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature. Med Phys. 2000;27(9):2008–23.

    Article  Google Scholar 

  4. Hilal S. Cerebral Hemodynamics Assessed by Angiography. St Louis: CV Mosby Co: Radiology of the Skull and Brain: Angiography; 1974.

    Google Scholar 

  5. W¨achter I, Bredno J, Hermans R, et al. Model-based blood flow quantification from rational angiography. Med Image Anal. 2008;12(5):586–602.

    Article  Google Scholar 

  6. Ahmed A, Deuerling-Zheng Y, Strother C, et al. Impact of intra-arterial injection parameters on arterial, capillary, and venous time concenteration curves in a canine model. Am J Neuroradiol. 2009; p. 1337–41.

    Google Scholar 

  7. Rosen L, Silverman N. Videodensitometric measurement of blood flow using crosscorrelation technique. Radiology. 1973; p. 305–10.

    Google Scholar 

  8. Thompson K, Starmer F, et al RW. Indicator transit time considered as a gamma variate. Circ Res. 1964; p. 502–15.

    Google Scholar 

  9. Kelley C. Iterative Methods for Optimization. Philadelphia: SIAM Press; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Alassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alassi, S., Kowarschik, M., Pohl, T., Köstler, H., Rude, U. (2012). Estimating Blood Flow Based on 2D Angiographic Image Sequences. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28502-8_66

Download citation

Publish with us

Policies and ethics