Skip to main content

Rigid US-MRI Registration Through Segmentation of Equivalent Anatomic Structures

A Feasibility Study using 3D Transcranial Ultrasound of the Midbrain

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2012

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1735 Accesses

Abstract

Multi-modal registration between 3D ultrasound (US) and magnetic resonance imaging (MRI) is motivated by aims such as image fusion for improved diagnostics or intra-operative evaluation of brain shift. In this work, we present a rigid region-based registration approach between MRI and 3D-US based on the segmentation of equivalent anatomic structures in both modalities. Our feasibility study is performed using segmentations of the midbrain in both MRI and 3D transcranial ultrasound. Segmentation of MRI is based on deformable atlas registration while for 3D US segmentation, we recently proposed an accurate and robust method based on statistical shape modeling and a discrete and localized active surface segmentation framework. The multimodal registration is performed through intensity-based rigid registration of signed distance transforms of both segmentations. Qualitative results and a demonstration of the basic feasibility of the region-based registration are demonstrated on a pair of MRI and challenging 3D transcranial US data volumes from the same subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang X, Hill NA, Ren J, et al. Dynamic 3D ultrasound and MR image registration of the beating heart. In: Proc MICCAI; 2005. p. 171–8.

    Google Scholar 

  2. Winter S, Dekomien C, Hensel K, et al. [Registration of intraoperative 3D ultrasound with preoperative MRI data for computer-assisted orthopaedic surgery]. Z Orthop Unfall. 2007;145:586–90.

    Article  Google Scholar 

  3. Blackall JM, Penney GP, King AP, et al. Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation. IEEE Trans Med Imaging. 2005;24:1405–16.

    Article  Google Scholar 

  4. Reinertsen I, Descoteaux M, Siddiqi K, et al. Validation of vessel-based registration for correction of brain shift. Med Image Anal. 2007;11:374–88.

    Article  Google Scholar 

  5. Blumenthal T, Hartov A, Lunn K, et al. Quantifying brain shift during neurosurgery using spatially tracked ultrasound. Proc SPIE. 2005;5744:388.

    Article  Google Scholar 

  6. Letteboer MM, Willems PW, Viergever MA, et al. Brain shift estimation in imageguided neurosurgery using 3-D ultrasound. IEEE Trans Biomed Eng. 2005;52:268–76.

    Article  Google Scholar 

  7. Berg D, Seppi K, Behnke S, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch Neurol. 2011;68:932–7.

    Article  Google Scholar 

  8. Feldman M, Tomaszewski J, Davatzikos C. Non-rigid registration between histological and MR images of the prostate: A joint segmentation and registration framework. Proc IEEE CVPR Workshops. 2009;1:125–32.

    Google Scholar 

  9. Ahmadi SA, Baust M, Karamalis A, et al. Midbrain segmentation in transcranial 3d ultrasound for parkinson diagnosis. In: Proc MICCAI; 2011. p. 362–9.

    Google Scholar 

  10. Borgefors G. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Trans Pattern Anal Mach Intell. 1988;10(6):849–65.

    Article  Google Scholar 

  11. Lankton S, Tannenbaum A. Localizing region-based active contours. IEEE Trans Image Process. 2008;17(11):2029–39.

    Article  MathSciNet  Google Scholar 

  12. Glocker B, Komodakis N, Tziritas G, et al. Dense image registration through MRFs and efficient linear programming. Med Image Anal. 2008;12(6):731–41.

    Article  Google Scholar 

  13. Talos IF, Wald L, Halle M, et al. Multimodal SPL Brain Atlas Data. http://www.spl.harvard.edu/publications/item/view/1565, last accessed; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed-Ahmad Ahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahmadi, SA., Klein, T., Plate, A., Boetzel, K., Navab, N. (2012). Rigid US-MRI Registration Through Segmentation of Equivalent Anatomic Structures. In: Tolxdorff, T., Deserno, T., Handels, H., Meinzer, HP. (eds) Bildverarbeitung für die Medizin 2012. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28502-8_71

Download citation

Publish with us

Policies and ethics