Skip to main content

Folkview: A Multi-agent System Approach to Modeling Folksonomies

  • Conference paper
Advances in User Modeling (UMAP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7138))

Abstract

Folksonomies contain semantic information on data, and represent a meaningful mean for identifying similarities among users, resources and tags. Their strong potential is often reduced by the lack in social tagging systems of specialized functionalities for managing and modifying them, and of specific tools for generating customized and dynamic views on them.

The aim of this paper is to present Folkview, an innovative way to conceive a folksonomy in terms of a multi-agent system. Each element (tag, user, resource) become an active entity and the folksonomy transforms itself from a traditional passive container of data into a computational agent, provided of a set of procedural and distributed skills.

The agents actively collaborate in order to generate dynamic and customized views and supporting users in the updating, managing and modifying her personomy, and the same folksonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dattolo, A., Ferrara, F., Tasso, C.: The role of tags for recommendation: a survey. In: 3rd IEEE Intern. Conf. on Human System Interaction, pp. 548–555 (2010)

    Google Scholar 

  2. Dattolo, A., Ferrara, F., Tasso, C.: On Social Semantic Relations for Recommending Tags and Resources Using Folksonomies. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T. (eds.) Human – Computer Systems Interaction: Backgrounds and Applications 2. AISC, vol. 98, pp. 311–326. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Li, W.S., Vu, Q., Agrawal, D., Hara, Y., Takano, H.: Powerbookmarks: A system for personalizable web information organization, sharing, and management. Computer Networks 31(11-16), 1375–1389 (1999)

    Article  Google Scholar 

  4. Rucker, J., Polanco, M.J.: Siteseer: personalized navigation for the web. Commun. ACM 40, 73–76 (1997)

    Article  Google Scholar 

  5. Keller, R.M., Wolfe, S.R., Chen, J.R., Rabinowitz, J.L., Mathe, N.: A bookmarking service for organizing and sharing urls. Comput. Netw. ISDN Syst. 29, 1103–1114 (1997)

    Article  Google Scholar 

  6. Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? Journal of Information Science 34(1), 15–29 (2007)

    Article  Google Scholar 

  7. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Bibsonomy: A social bookmark and publication sharing system. In: Conceptual Structures Tool Interoperability Workshop - 14th Intern. Conf. on Conceptual Structures, Aalborg, Denmark (2006)

    Google Scholar 

  8. Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic Grounding of Tag Relatedness in Social Bookmarking Systems. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 615–631. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Chojnacki, S., Klopotek, M.: Random graph generative model for folksonomy network structure approximation. Procedia Computer Science 1(1), 1683–1688 (2010); ICCS 2010

    Google Scholar 

  10. VanderWal, T.: Folksonomy, http://www.vanderwal.net/folksonomy.html

  11. Mathes, A.: Folksonomies - cooperative classification and communication through shared metadata. In: Computer Mediated Communication - LIS590CMC (2004)

    Google Scholar 

  12. Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Abel, F., Henze, N., Krause, D.: A novel approach to Social Tagging: GroupMe! In: 4th Int. Conf. on Web Information Systems and Technologies, pp. 42–49 (2008)

    Google Scholar 

  14. Lambiotte, R., Ausloos, M.: Collaborative Tagging as a Tripartite Network. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 1114–1117. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Dattolo, A., Eynard, D., Mazzola, L.: An integrated approach to discover tag semantics. In: 26th Annual ACM Symposium on Applied Computing, Web Technologies Track, Taichung, Taiwan (2011)

    Google Scholar 

  16. Trattner, C., Körner, C., Helic, D.: Enhancing the navigability of social tagging systems with tag taxonomies. In: I-KNOW, p. 18 (2011)

    Google Scholar 

  17. Helic, D., Strohmaier, M., Trattner, C., Muhr, M., Lerman, K.: Pragmatic evaluation of folksonomies. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 417–426. ACM (2011)

    Google Scholar 

  18. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report, Computer Science Department, Standford University (2006)

    Google Scholar 

  19. Hassan-Montero, Y., Herrero-Solana, V.: Visualizious: Visualizing social indexing semantics (2007), http://www.nosolousabilidad.com/hassan/visualizious/

  20. Klerkx, J., Duval, E.: Visualising social bookmarks. Jodi 10(2) (2009)

    Google Scholar 

  21. Rupert, M., Li, C., Hassas, S.: An organisational multi-agent systems approach for designing collaborative tagging systems. In: Int. Conf. on Web Intelligence and Intelligent Agent Technology - WI-IAT 2008, vol. 2, pp. 114–117 (2008)

    Google Scholar 

  22. Wooldridge, M.J., Jennings, N.R. (eds.): ECAI 1994 and ATAL 1994. LNCS(LNAI), vol. 890. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  23. Wooldridge, M., Jennings, R. (eds.): Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall (2003)

    Google Scholar 

  24. Poole, D., Mackworth, A. (eds.): Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press (2010)

    Google Scholar 

  25. Pudota, N., Dattolo, A., Baruzzo, A., Ferrara, F., Tasso, C.: Automatic keyphrase extraction and ontology mining for content-based tag recommendation. Int. J. Intell. Syst. 25(12), 1158–1186 (2010)

    Article  MATH  Google Scholar 

  26. Almeida, A., Sotomayor, B., Abaitua, J., López-De-Ipiña, D.: folk2onto: Bridging the gap between social tags and ontologies. In: Proceedings of WWW 2007 (2007)

    Google Scholar 

  27. Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Nelson, T.H.: A cosmology for a different computer universe: Data model, mechanisms, virtual machine and visualization infrastructure. Jodi 5(1) (2004)

    Google Scholar 

  29. Dattolo, A., Luccio, F.L.: A state of art survey on zz-structures. In: 1st Workshop on New Forms of Xanalogical Storage and Function. CEUR, vol. 508, pp. 1–6 (2009)

    Google Scholar 

  30. Dattolo, A., Luccio, F.L.: A New Concept Map Model for E-Learning Environments. In: Cordeiro, J., Hammoudi, S., Filipe, J. (eds.) Web Information Systems and Technologies. LNBIP, vol. 18, pp. 404–417. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Dattolo, A., Luccio, F.: Visualizing personalized views in virtual museum tours. In: International Conference on Human System Interaction-HSI 2008, pp. 109–114 (May 2008)

    Google Scholar 

  32. Dattolo, A., Luccio, F.L.: A Formal Model for Supporting the Adaptive Access to Virtual Museums. In: Hippe, Z.S., Kulikowski, J.L. (eds.) Human-Computer Systems Interaction. Advances in Intelligent and Soft Computing, vol. 60, pp. 481–492. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. McGuffin, M., Schraefel, M.: A comparison of hyperstructures: Zzstructures, mspaces, and polyarchies. In: 15th ACM Conference on Hypertext and Hypermedia - HT 2004, pp. 153–163 (August 2004)

    Google Scholar 

  34. Dattolo, A., Luccio, F.L.: A formal description of zz-structures. In: 1st Workshop on New Forms of Xanalogical Storage and Function. CEUR, vol. 508, pp. 7–11 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dattolo, A., Pitassi, E. (2012). Folkview: A Multi-agent System Approach to Modeling Folksonomies. In: Ardissono, L., Kuflik, T. (eds) Advances in User Modeling. UMAP 2011. Lecture Notes in Computer Science, vol 7138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28509-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28509-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28508-0

  • Online ISBN: 978-3-642-28509-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics