Abstract
A connection between the convolutive nonnegative matrix factorization (NMF) and the conventional NMF has been established. As a result, we can convey arbitrary alternating update rules for NMF to update rules for CNMF. In order to illustrate the novel derivation method, a multiplicative algorithm and a new ALS algorithm for CNMF are derived. The experiments confirm validity and high performance of our method and of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schmidt, M.N., Mørup, M.: Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation. In: Rosca, J.P., Erdogmus, D., Principe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 700–707. Springer, Heidelberg (2006)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)
O’Grady, P.D., Pearlmutter, B.A.: Discovering speech phones using convolutive non-negative matrix factorization with a sparseness constraint. Neurocomput. 72, 88–101 (2008)
Smaragdis, P.: Convolutive speech bases and their application to supervised speech separation. IEEE Transactions on Audio, Speech and Language Processing 15(1), 1–12 (2007)
Ozerov, A., Févotte, C.: Multichannel nonnegative matrix factorization in convolutive mixtures with application to blind audio source separation. In: ICASSP 2009, USA, pp. 3137–3140 (2009)
Wang, W., Cichocki, A., Chambers, J.A.: A multiplicative algorithm for convolutive non-negative matrix factorization based on squared Euclidean distance. IEEE Transactions on Signal Processing 57(7), 2858–2864 (2009)
Lee, D.D., Seung, H.S.: Algorithms for Nonnegative Matrix Factorization, vol. 13. MIT Press (2001)
Berry, M., Browne, M., Langville, A., Pauca, P., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis 52(1), 155–173 (2007)
Smaragdis, P.: Non-Negative Matrix Factor Deconvolution; Extraction of Multiple Sound Sources from Monophonic Inputs. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 494–499. Springer, Heidelberg (2004)
Ellis, D.: Spectrograms: Constant-q (log-frequency) and conventional (linear) (May 2004), http://labrosa.ee.columbia.edu/matlab/sgram/
FitzGerald, D., Cranitch, M., Coyle, E.: Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation. In: Computational Intelligence and Neuroscience, vol. 2008, Article ID 872425, 15 pages (2008), doi:10.1155/2008/872425
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Phan, A.H., Cichocki, A., Tichavský, P., Koldovský, Z. (2012). On Connection between the Convolutive and Ordinary Nonnegative Matrix Factorizations. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-28551-6_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28550-9
Online ISBN: 978-3-642-28551-6
eBook Packages: Computer ScienceComputer Science (R0)