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Abstract. We present a method for audio source separation and local-
ization from binaural recordings. The method combines a new genera-
tive probabilistic model with time-frequency masking. We suggest that
device-dependent relationships between point-source positions and inter-
aural spectral cues may be learnt in order to constrain a mixture model.
This allows to capture subtle separation and localization features embed-
ded in the auditory data. We illustrate our method with data composed
of two and three mixed speech signals in the presence of reverberations.
Using standard evaluation metrics, we compare our method with a recent
binaural-based source separation-localization algorithm.

1 Introduction

We address the problem of simultaneous separation and localization of sound
sources mixed in an acoustical environment and recorded with two microphones.
Time-frequency masking is a technique allowing the separation of an arbitrary
number of sources with only two microphones by assuming that a single source
is active at every time-frequency point – the W-disjoint orthogonality (W-DO).
It was shown that this assumption holds, in general, for simultaneous speech sig-
nals [8]. The input signal is represented in a time-frequency domain and points
corresponding to the target source are weighted with 1 and otherwise with 0.
The masked spectrogram is then converted back to a temporal signal. A number
of methods combine time-frequency masking with localization-based clustering
([8],[3],[2]), e.g., DUET [8] which allows to separate anechoic mixtures when each
source reaches the microphones with a single attenuation coefficient and delay.
This mixing model is well suited for “clean” binaural recordings. In practice,
more complex filtering effects exist, namely the head-related transfer function
(HRTF) and the room impulse response (RIR). These filters lead to frequency-
dependent attenuations and delays between the two microphones, respectively
called the interaural level difference (ILD) and the interaural phase difference
(IPD). Some approaches attempted to account for these dependencies by learn-
ing a mapping between azimuth, frequencies and interaural cues [7,5,3]. These
mappings usually consist in finding a functional relationship that best fits data
obtained from an HRTF dataset. To improve robustness to RIR variations, these
interaural cues can also be integrated in a mixture model, e.g., [2].
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In this paper we propose to directly learn a discrete mapping between a set
of 3D point sources and IPD/ILD spectral cues. We will refer to such mappings
as Source-Position-to-Interaural-Cues maps (SPIC maps). Unlike what is done
in [7,5,3], the proposed mapping is built point-wise, does not rely on azimuth
only and is device-dependent. We explicitly incorporate it into a novel latently
constrained mixture model for point sound sources. Our model is specifically de-
signed to capture the richness of binaural data recorded with an acoustic dummy
head, and this to improve both localization and separation performances. We
formally derive an EM algorithm that iteratively performs separation (E-step)
followed by localization and source-parameter estimation (M-step). The algo-
rithm is supervised by a training stage consisting in learning a mapping between
potential source positions and interaural cues, i.e., SPIC maps. We believe that
a number of methods could be used in practice to learn such maps. In particular
we propose an audio-motor mapping approach. The results obtained with our
method compare favorably with the recently proposed MESSL algorithm [2].

2 Binaural Sound Representation

Spectrograms associated with each one of the two microphones are computed
using short-term FFT analysis. We use a 64ms time-window with 8ms window
overlap, thus yielding T = 126 time windows for a 1s signal. Since sounds were
recorded at a sample rate of 16,000Hz, each time window contains 1,024 samples.
Each window is then transformed via FFT to obtain complex coefficients of
F = 513 positive frequency channels between 0 and 8,000Hz. We denote with

s
(k)
f,t ∈ C the (f, t) point of the spectrogram emitted by sound-source k, and with

s
(L)
f,t and s

(R)
f,t the spectrogram points perceived by the left- and right-microphone

respectively. The W-DO assumption implies that a single sound source k emits
at a given point (f, t). The relationships between the emitted and the left and
right perceived spectrogram points are:

s
(L)
f,t = h(L)(xk, f) s

(k)
f,t and s

(R)
f,t = h(R)(xk, f) s

(k)
f,t (1)

where xk ∈ R3 is the 3D position of sound source k in a listener-centered coor-
dinate frame and h(L) and h(R) denote the left and right HRTFs. The interaural
transfer function (ITF) is defined by the ratio between the two HRTFs, i.e.,
I(xk, f) = h(R)(xk, f)/h

(L)(xk, f) ∈ C. The interaural spectrogram is defined

by Îf,t := s
(R)
f,t /s

(L)
f,t , so that Îf,t ≈ I(xk, f). Note that the last approximation

only holds if there is a source k emitting at frequency-time point (f, t), and if the
time delay between microphones (≈ 0.75ms) is much smaller than the Fourier
transform time-window that is used (64ms). Under these conditions, at a given
frequency-time point, the interaural spectrogram value Îf,t does not depend on

the emitted spectrogram value s
(k)
f,t but only on the emitting source position

xk. We finally define the ILD spectrogram α and the IPD spectrogram φ as the
log-amplitude and phase of the complex interaural spectrogram Îf,t:
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αf,t = 20 log |Îf,t| ∈ R, φf,t = arg(Îf,t) ∈ ]−π, π] (2)

As already outlined in Section 1 our method makes use of a SPIC map that is
learnt during a training stage. Let X = {xn}Nn=1 be a set of 3D sound-source
locations in a listener-centered coordinate frame. Let a sound-source n, located
at xn emit white noise and let {αn

f,t}F,T
f=1,t=1 and {φnf,t}F,T

f=1,t=1be the perceived

ILD and IPD spectrograms. The mean ILD μ(xn) = (μn
1 . . . μ

n
f . . . μ

n
F )

� ∈ RF

and mean IPD ξ(xn) = (ξn1 . . . ξ
n
f . . . ξ

n
F )

� ∈ ]−π, π] vectors associated with
n are defined by taking the temporal means of αn and φn at each frequency
channel:

μn
f = 1/T

∑T
t=1 α

n
f,t and ξnf = arg(1/T

∑T
t=1 e

jφn
f,t) (3)

Vector ξ is estimated in the complex domain in order to avoid problems due to
phase circularity [4]. White noise is used because it contains equal power within
a fixed bandwidth at any center frequency: The source n is therefore the only
source emitting at each point (f, t); μn

f and ξnf are thus approximating the log-
amplitude and phase of I(xk, f). The set X of 3D source locations as well as
the mappings μ and ξ will be referred to as the training data to be used in
conjunction with the separation-localization algorithm described below.

3 Constrained Mixtures for Separation and Localization

Let’s suppose now that there are K simultaneously emitting sounds sources
from unknown locations {xk}Kk=1 ⊂ X and with unknown spectrograms. Using
the listener’s microphone pair it is possible to build the ILD and IPD observed
spectrograms {αf,t}F,T

f=1,t=1 and {φf,t}F,T
f=1,t=1. The goal of the sound-source sep-

aration and localization algorithm described in this section is to associate each
observed point (f, t) with a single source and to estimate the 3D location of each
source.

As mentioned in section 2, the observations αf,t (ILD) and φf,t (IPD) are
significant only if there is a sound source emitting at (f, t). To identify such
significant observations we estimate the sound intensity level (SIL) spectrogram
at the two microphones, and retain only those frequency-time points for which
the SIL is above some threshold. One empirical way to choose the thresholds
(one for each frequency) is to average the SILs at each f in the absence of any
emitting source. These thresholds are typically very low compared to SILs of
natural sounds, and allow to filter out frequency-time points corresponding to
“room silence”. Let Mf ≤ T be the number of significant observations at f and
let αf,m and φf,m be the m-th significant ILD and IPD observations at f . Let

A = {αf,m}F,Mf

f=1,m=1 and Φ = {φf,m}F,Mf

f=1,m=1 be the observed data.

Let zf,m ∈ {0, 1}K be the missing data, i.e., the data-to-source assignment
variables, such that zf,m,k = 1 if observations αf,m and φf,m are generated by
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source k, and zf,m,k = 0 otherwise. The W-DO assumption yields
∑K

k=1 zf,m,k =

1 for all (f,m). Mk = {zf,m,k}F,Mf

f=1,m=1 is the binary spectral mask of the k-th

source. Finally, Z = {zf,m}F,Mf

f=1,m=1 denotes the set of all missing data. The
problem of simultaneous localization and separation amounts to estimate the
masking variables Z and the locations {xk}Kk=1 conditioned by A and Φ, given
the number of sources K. We assume that observed data are perturbed by Gaus-
sian noise. Hence, the probability of observing αf,m conditioned by source k
(zf,m,k = 1) located at xk is drawn from a normal distribution, and the proba-
bility of observing φf,m is drawn from a circular normal distribution. The source
position xk acts here as a latent constraint on ILD and IPD means:

P (αf,m|zf,m,k = 1,xk, σf,k) = N (αf,m|μf (xk), σ
2
f,k) and (4)

P (φf,m|zf,m,k = 1,xk, ρf,k) = N (Δ(φf,m, ξf (xk))|0, ρ2f,k) (5)

where σ2
f,k and ρ2f,k are the ILD and IPD variances associated with source k at

frequency f and theΔ function is defined byΔ(x, y) = arg(ej(x−y)) ∈ ]−π, π]. As
in [2], (5) approximates the normal distribution on the circle ]−π, π] when ρf,k
is small relative to 2π. Preliminary experiments on IPD spectrograms of white
noise showed that this assumption holds in the general case. As emphasized in
[2], the well known correlation between ILD and IPD does not contradict the as-
sumption that Gaussian noises corrupting the observations are independent. The
conditional likelihood of the observed data (αf,m, φf,m) is therefore given by the
product of (4) and (5). We also define the priors πf,k = P (zf,m,k) which model
the proportion of the observed data generated by source k at frequency f . In
summary, the model parameters are Θ = {{xk}; {πf,k}; {σ2

f,k}; {ρ2f,k}}F,K
f=1,k=1.

The problem can now be expressed as the maximization of the observed-data
log-likelihood conditioned by Θ. In order to keep the model as general as possi-
ble, there is no assumption on the emitted sounds as well as the way their spectra
are spread across the frequency-time points. Therefore, we assume that all the
observations are statistically independent, yielding the following expression for
the observed-data log-likelihood:

L(A,Φ;Θ) = logP (A,Φ;Θ) =
∑F

f=1

∑Mf

m=1 logP (αf,m, φf,m;Θ) (6)

We address this maximum-likelihood with missing-data problem within the
framework of expectation-maximization (EM). In our case, the E-step com-
putes the posterior probabilities of assigning each spectrogram point to a sound
source k (separation) while the M-step maximizes the expected complete-data
log-likelihood with respect to the model parameters Θ and, most notably, with
the source locations {xk}Kk=1 (localization). The MAP criterion provides binary
spectral masks Mk associated with each source k while the final parameters
{xk}Kk=1 provide estimates for the source locations. The expected complete-data
log-likelihood writes ((p) denotes the p-th iteration):

Q(Θ|Θ(p−1)) =
∑F

f=1

∑Mf

m=1

∑K
k=1 r

(p)
f,m,k log πf,kP (αf,m, φf,m|zf,m;Θ) (7)
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The E-step updates the responsibilities according to the standard formula:

r
(p)
f,m,k =

πf,kP (αf,m, φf,m|zf,m;Θ(p−1))
∑K

i=1 πf,iP (αf,m, φf,m|zf,m;Θ(p−1))
(8)

The M-step maximizes (7) with respect to Θ. By combining (4) and (5) with (7)
the equivalent minimization criterion writes:

F∑

f=1

Mf∑

m=1

r
(p)
f,m,k

(

log
(

σ2
f,kρ

2
f,k

π2
f,k

)
+

(xf,m − μf (xk))
2

σ2
f,k

+
Δ(φf,m, ξf (xk))

2

ρ2f,k

)

(9)

which can be differentiated with respect to {πf,k}f , {σf,k}f and {ρf,k}f to obtain
closed-form expressions for the optimal parameter values conditioned by xk:

π̃f,k =
rf,k
Mf

, with rf,k =
∑Mf

m=1 rf,m,k (10)

σ̃2
f,k(xk) =

1
rf,k

∑Mf

m=1 r
(p)
f,m,k(xf,m − μf (xk))

2 (11)

ρ̃2f,k(xk) =
1

rf,k

∑Mf

m=1 r
(p)
f,m,kΔ(φf,m, ξf (xk))

2 (12)

By substituting (11) and (12) into (9) the optimal location x̃k is obtained by
minimizing the following expression with respect to xk:

F∑

f=1

rf,k

(

log

(

1 +
(αf,k − μf (xk))

2

Vf,k

)

+ log

(

1 +
Δ(φf,k, ξf (xk))

2

Wf,k

))

(13)

with: αf,k = 1
rf,k

∑Mf

m=1 r
(p)
f,m,kαf,m ; Vf,k = 1

rf,k

∑Mf

m=1 r
(p)
f,m,k(αf,m − αf,k)

2

φf,k = arg
(

1
rf,k

∑Mf

m=1 r
(p)
f,m,ke

jφf,m

)
;Wf,k = 1

rf,k

∑Mf

m=1 r
(p)
f,m,kΔ(φf,m, φf,k)

2

(13) is evaluated for each source location in the training dataset X (Section 2)
in order to find an optimal 3D location x̃k. This is then substituted back in (11)
and (12) to estimate σ̃f,k and ρ̃f,k and repeated for each unknown source k.

In general, EM converges to a local maximum of (6). The non-injectivity na-
ture of the interaural functions μf and ξf and the high cardinality of Θ leads
to a very large number of such maxima, especially when the training set X
is large. This makes our algorithm very sensitive to initialization. One way to
avoid being trapped in local maxima is to initialize the mixture’s parameters
at random several times. This cannot be easily applied here since there is no
straightforward way to initialize the model’s variances. Alternatively, one may
randomly initialize the assignment variables Z and then proceed with the M-
step. However, extensive simulated experiments revealed that this solution fails
to converge to the ground-truth solution in most of the cases. We therefore
propose to combine these strategies by randomly perturbing both the source
locations and the source assignments during the first stages of the algorithm.
We developed a stochastic initialization procedure similar in spirit to SEM [1].
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The SEM algorithm includes a stochastic step (S) between the E- and the M-step,
during which random samples Rf,m,k ∈ {0, 1} are drawn from the responsibilities
(8). These samples are then used instead of (8) during the M-step. To initialize

our algorithm, we first set r
(0)
f,m,k = 1/K for all k and then proceed through

the sequence S M* E S M, where M* is a variation of M in which the source
positions are drawn randomly from X instead of solving (13). In practice, ten
such initializations are used to enforce algorithm convergence, and only the one
providing the best log-likelihood after two iterations is iterated twenty more
times. A second technique was used to overcome local maxima issues due to the
large number of parameters. During the first ten steps of the algorithm only,
a unique pair of variances (σ2

k, ρ
2
k) is estimated for each source. This is done

by calculating the means σ2
k(xk) and ρ2k(xk) of frequency-dependent variances

(11) and (12) weighted by rf,k. The optimal value x̃k is the one minimizing
σ2
k(x)ρ

2
k(x) evaluated over all x ∈ X . Intensive experiments showed that the

proposed method converges to a global optimum in most of the cases.

4 Experiments, Results, and Conclusions

In order to evaluate and compare our method, a specific data set of binaural
records was built1 using a Sennheiser MKE 2002 acoustic dummy-head mounted
onto a robotic system with two rotational degrees of freedom, namely pan (ψ)
and tilt (θ). This device, specifically designed to perform accurate and repro-
ducible motions, allows us to collect both a very dense SPIC map for the training
set (section 2) and a large test set of mixed speech point sources. The emitter (a
loud speaker) is placed at approximately 2.5 meters in front of the listener. Un-
der these conditions the HRTF mainly depends on the sound-source direction:
Hence, the location is parameterized by the angles ψ and θ. All the experiments
were carried out in a reverberant room and in the presence of background noise.
For recording purposes, the robot is placed in 90 pan angles ψ ∈ [−90◦, 90◦] (left-
right) and 60 tilt angles θ ∈ [−60◦, 60◦] (top-down), i.e., N = 5, 400 uniformly
distributed motor states in front of the static emitter, forming the set X . Five
binaural recordings are available with each motor state: Sound #0 corresponds
to a 1s “room silence” used to estimate the SIL thresholds (section 3). Sound #1
corresponds to 1s white-noise used to build the training set (section 2). Sounds
#2, #3 and #4 form the test set and correspond to “They never met you know”
by a female (#2), “It was time to go up myself” by a male (#3), and “As we
ate we talked” by a male (#4). The three sounds are about 2s long and were
randomly chosen from the TIMIT database. Each record was associated to its
ground-truth motor-state, thus allowing to create signals of mixed sound sources
from different direction with 2◦ resolution.

We generated 1000 mixtures of two and three speech signals emitted by ran-
domly located sources. 97.7% of the individual sources were correctly mapped to
their associated position (i.e. ≤ 2◦ error for both ψ and θ) in the two-source case,

1 Online at: http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset

http://perception.inrialpes.fr/~Deleforge/CAMIL_Dataset
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Table 1. Comparing the mean

source-to-distortion ratio (SDR) and
source-to-interference ratio (SIR), in
dB, for 1000 mixtures of 2 and 3
sources. Mean separation results with
our approach are calculated over all
sources (All) and over correctly local-
ized sources only (Loc).

2 Sources 3 Sources
SDR SIR SDR SIR

Oracle Mask 11.73 19.23 9.20 16.16
Our Approach (Loc) 5.28 8.91 2.44 3.92
Our Approach (All) 5.19 8.84 1.72 2.74

MESSL-G 2.83 5.74 1.48 1.47
Original Mixture 0.00 0.45 -3.50 -2.82

and 63.8% in the three-source case. The performance of separation was evaluated
with the standard SDR and SIR metrics [6]. We compared our results to those
obtained with the original mixture (no mask applied), with the ground truth
or Oracle mask [8], and with the recently proposed MESSL2 algorithm [2]. The
Oracle mask is set to 1 at every spectrogram point in which the target signal is
at least as loud as the combined other signals and 0 everywhere else. The version
MESSL-G used includes a garbage component and ILD priors to better account
for reverberations and is reported to outperform four methods in reverberant
conditions, including [8] and [3]. Table 1 shows that our method yields signif-
icantly better results than MESSL-G on an average, although both algorithm
require similar computational times. Notice how the localization correctness crit-
ically affects the separation performances, and decreases in the three-source case,
as the number of observations per source becomes lower and the number of local
maxima in (6) becomes higher. Our SDR scores strongly outperform MESSL-G
in most cases, while SIR results are only slightly better when sources are more
than 70◦ apart in azimuth (pan angle), e.g., Fig. 1. However, they become much
higher when sources are nearby in azimuth, or share the same azimuthal plane
with different elevations (tilt angles). This is because MESSL relies on the esti-
mation of a probability density in a discretized ITD space for each source, and
thus does not account for more subtle spatial cues induced by the HRTF.

These results clearly demonstrate the efficiency of our method, but they some-
how favor our algorithm because of the absence of RIR variations both in the
training and the test data sets. The aim of experimenting with these relatively
simple data has been to show that our method can conceptually separate and
accurately locate both in azimuth and elevation a binaural mixture of 2 to 3
sound sources. The prerequisite is a training stage: the interaural cues associ-
ated with source positions need to be learnt in advance using white noise, and
we showed that the algorithm performs well even for a very large and dense set
of learnt positions. Preliminary results obtained while changing the position of
the test sound source in the room suggested that our constrained mixture model
coupled with frequency-dependent variances presented some robustness to RIR
variations. Alternatively, one could build a training set on different premises
such as seat locations in a conference room or musician locations in a concert
hall, and thus directly learn the RIR during the training stage.

To conclude, we proposed a novel audio source separation and localization
method based on a mixture model constrained by a SPIC map. Experiments

2 http://blog.mr-pc.org/2011/09/14/messl-code-online/.

http://blog.mr-pc.org/2011/09/14/messl-code-online/
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Fig. 1. SIR as a function of azimuth (pan) and elevation (tilt) separation between two sources.
Left: one source fixed at (−90◦, 0◦) while the other takes 90 positions between (−90◦, 0◦) and
(+90◦, 0◦). Right: one source fixed at (0◦,−60◦) while the other takes 60 positions between
(0◦,−60◦) and (0◦,+60◦). SIRs are averaged over 6 mixtures of 2 sources (12 targets). Top-
to-down: Oracle (∗), our method (◦), MESSL-G (�), and original mixture (+).

and comparisons showed that our algorithm performs better than a recently
published probabilistic spectral masking technique in terms of separation and
yields very good multi-source localization results. The combination of a SPIC
map with a mixture model is a unique feature. In the future, we plan to study
more thoroughly the behavior of our algorithm to RIR variations, and improve
its robustness by extending our model to a continuous and probabilistic mapping
between source positions and interaural parameters. Dynamic models incorpo-
rating moving sound sources and head movements could also be included.
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