Abstract
In the study of gene regulatory networks, more and more quantitative data becomes available. However, few of the players in such networks are observed, others are latent. Focusing on the inference of multiple such latent causes, we arrive at a blind source separation problem. Under the assumptions of independent sources and Gaussian noise, this condenses to a Bayesian independent component analysis problem with a natural dynamic structure. We here present a method for the inference in networks with linear dynamics, with a straightforward extension to the nonlinear case. The proposed method uses a maximum a posteriori estimate of the latent causes, with additional prior information guaranteeing independence. We illustrate the feasibility of our method on a toy example and compare the results with standard approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blöchl, F., Theis, F.J.: Estimating Hidden Influences in Metabolic and Gene Regulatory Networks. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 387–394. Springer, Heidelberg (2009)
Busch, H., Camacho-Trullio, D., Rogon, Z., Breuhahn, K., Angel, P., Eils, R., Szabowski, A.: Gene network dynamics controlling keratinocyte migration. Molecular Systems Biology 4 (2008)
Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 4(6767), 335–338 (2000)
Højen-Sørensen, P.A., Winther, O., Hansen, L.K.: Mean-field approaches to independent component analysis. Neural Computation 14, 889–918 (2002)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)
Hyvärinen, A.: Fast and robust fixedpoint algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)
Lartillot, N., Philippe, H.: Computing Bayes factors using thermodynamic integration. Systematic Biology 55, 195–207 (2006)
Marin, J., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on mixtures of distributions. Bayesian Thinking (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hug, S., Theis, F.J. (2012). Bayesian Inference of Latent Causes in Gene Regulatory Dynamics. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_64
Download citation
DOI: https://doi.org/10.1007/978-3-642-28551-6_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28550-9
Online ISBN: 978-3-642-28551-6
eBook Packages: Computer ScienceComputer Science (R0)