Skip to main content

Bayesian Inference of Latent Causes in Gene Regulatory Dynamics

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

  • 2512 Accesses

Abstract

In the study of gene regulatory networks, more and more quantitative data becomes available. However, few of the players in such networks are observed, others are latent. Focusing on the inference of multiple such latent causes, we arrive at a blind source separation problem. Under the assumptions of independent sources and Gaussian noise, this condenses to a Bayesian independent component analysis problem with a natural dynamic structure. We here present a method for the inference in networks with linear dynamics, with a straightforward extension to the nonlinear case. The proposed method uses a maximum a posteriori estimate of the latent causes, with additional prior information guaranteeing independence. We illustrate the feasibility of our method on a toy example and compare the results with standard approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blöchl, F., Theis, F.J.: Estimating Hidden Influences in Metabolic and Gene Regulatory Networks. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 387–394. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Busch, H., Camacho-Trullio, D., Rogon, Z., Breuhahn, K., Angel, P., Eils, R., Szabowski, A.: Gene network dynamics controlling keratinocyte migration. Molecular Systems Biology 4 (2008)

    Google Scholar 

  3. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 4(6767), 335–338 (2000)

    Article  Google Scholar 

  4. Højen-Sørensen, P.A., Winther, O., Hansen, L.K.: Mean-field approaches to independent component analysis. Neural Computation 14, 889–918 (2002)

    Article  MATH  Google Scholar 

  5. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  6. Hyvärinen, A.: Fast and robust fixedpoint algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  7. Lartillot, N., Philippe, H.: Computing Bayes factors using thermodynamic integration. Systematic Biology 55, 195–207 (2006)

    Article  Google Scholar 

  8. Marin, J., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on mixtures of distributions. Bayesian Thinking (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hug, S., Theis, F.J. (2012). Bayesian Inference of Latent Causes in Gene Regulatory Dynamics. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics