Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 408))

  • 767 Accesses

Abstract

Interdisciplinarity in the Computer Supported Collaborative Learning (CSCL) research field involves the application of several methodological approaches towards analysis that range from deep-level qualitative analyses of small interaction-rich episodes of collaboration, to quantitative measures of suitably categorized events of interaction used as indicators of the success of collaboration in some of its facets. This article adopts an alternative approach to CSCL analysis that aims at taking advantage of some desired properties of each of these diverse methodological trends, involving the use of a rating scheme for the assessment of collaboration quality. After defining a set of dimensions that cover the most important aspects of collaboration, it employs appropriately trained human raters basing their assessments on substantial aspects of collaboration that are not easily formalisable. The activities studied here regard 228 collaborating dyads, working synchronously on a problem-solving task. Based on this large dataset, relations between dimensions of collaboration quality are unraveled on empirical grounds, by elaborating ratings statistically using a multidimensional scaling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avouris, N., Margaritis, M., Komis, V.: Modelling interaction during small-group synchronous problem-solving activities: The Synergo approach. In: 2nd Int. Workshop on Designing Computational Models of Collaborative Learning Interaction, ITS 2004, Maceio, Brasil (September 2004)

    Google Scholar 

  2. Bohl, M.: Flowcharting Techniques. Science Research Associates, Chicago (1971)

    Google Scholar 

  3. Borg, I., Lingoes, J.: Multidimensional Similarity Structure Analysis. Springer, Beverley Hills (1987)

    Book  Google Scholar 

  4. Borg, I., Groenen, P.: Modern Multidimensional Scaling. Springer, Berlin (1997)

    MATH  Google Scholar 

  5. Cicchetti, D.V., Sparrow, S.S.: Developing criteria for establishing the interrater reliability of specific items in a given inventory. American Journal of Mental Deficiency 86, 127–137 (1981)

    Google Scholar 

  6. Clark, H., Brennan, S.: Grounding in communication. In: Resnick, L.B., Levine, J., Teasley, S. (eds.) Perspectives on Socially Shared Cognition, pp. 127–149. APA Press, Washington, DC (1991)

    Chapter  Google Scholar 

  7. Clark, H.: Using language. Cambrigde University Press, Cambridge (1996)

    Google Scholar 

  8. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, London (2001)

    MATH  Google Scholar 

  9. Davison, M.L.: Multidimensional Scaling. John Wiley and Sons, New York (1983)

    MATH  Google Scholar 

  10. De Leeuw, J.: Applications of convex analysis to multidimensional scaling. In: Barra, J., Brodeau, F., Romier, G., van Cutsem, B. (eds.) Recent Developments in Statistics, pp. 133–145. North Holland Publishing Company, Amsterdam (1977)

    Google Scholar 

  11. De Leeuw, J., Heiser, W.J.: Theory of multidimensional scaling. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 285–316. North-Holland, Amsterdam (1982)

    Google Scholar 

  12. Dillenbourg, P., Baker, M., Blaye, A., O’Malley, C.: The evolution of research on collaborative learning. In: Reimann, P., Spada, H. (eds.) Learning in Humans and Machines, pp. 189–211. Springer, Berlin (1995)

    Google Scholar 

  13. Fischer, F., Mandl, H.: Being there or being where? Videoconferencing and cooperative learning. In: van Oostendorp, H. (ed.) Cognition in a Digital World, pp. 205–223. Lawrence Erlbaum Associates, Mahwah (2003)

    Google Scholar 

  14. Fleiss, J.L.: Statistical Methods for Rates and Proportions, 2nd edn. Wiley, New York (1981)

    MATH  Google Scholar 

  15. George, D., Mallery, P.: SPSS for Windows Step by Step: A Simple Guide and Reference. 11.0 Update. Allyn & Bacon, Boston (2003)

    Google Scholar 

  16. Guttman, L.A.: A general non-metric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33, 495–506 (1968)

    Article  Google Scholar 

  17. Kahrimanis, G., Meier, A., Chounta, I.-A., Voyiatzaki, E., Spada, H., Rummel, N., Avouris, N.: Assessing Collaboration Quality in Synchronous CSCL Problem-Solving Activities: Adaptation and Empirical Evaluation of a Rating Scheme. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 267–272. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Kahrimanis G., Avouris, A., Komis, V.: Interaction analysis as a tool for supporting collaboration. An overview. In: Daradoumis, T., Caballe, S., Juan, A.A., Xhafa, F. (eds.) Technology-Enhanced Systems and Tools for Collaborative Learning Scaffolding (in press)

    Google Scholar 

  19. Kerlinger, F.N., Lee, H.B.: Foundations of behavioral research. Harcourt College Publishers, New York (2000)

    Google Scholar 

  20. Kruskal, J.B.: Multidimensional scaling by optimizing goodness-of-fit to a non-metric hypothesis. Psychometrica 29, 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Sage Publications, London (1978)

    Google Scholar 

  22. Laughlin, P.R.: Social combination processes of cooperative, problem-solving groups on verbal intellective tasks. In: Fishbein, M. (ed.) Progress in Social Psychology, vol. 1, pp. 127–155. Lawrence Erlbaum, Hillsdale (1980)

    Google Scholar 

  23. Meier, A., Spada, H., Rummel, N.: A rating scheme for assessing the quality of computer-supported collaboration processes. International Journal of Computer-Supported Collaborative Learning 2, 63–86 (2007)

    Article  Google Scholar 

  24. Meier, A., Voyiatzaki, E., Kahrimanis, G., Rummel, N., Spada, H., Avouris, N.: Teaching students how to improve their collaboration: Assessing collaboration quality and providing adaptive feedback in a CSCL setting. In: Rummel, N., Weinberger, A. (eds.) New Challenges in CSCL: Towards Adaptive Script Support, Worshop in Proceedings of the Eighth International Conference of the Learning Sciences (ICLS 2008), Utrecht, vol. 3, pp. 338–345. International Society of the Learning Sciences (June 2008)

    Google Scholar 

  25. Roschelle, J.: Learning by collaboration: Convergent conceptual change. Journal of the Learning Sciences 2, 235–276 (1992)

    Article  Google Scholar 

  26. Scardamalia, M., Bereiter, C.: Computer support for knowledge-building communities. In: Koschmann, T. (ed.) CSCL: Theory and Practice of an Emerging Paradigm, pp. 249–268. Lawrence Erlbaum Associates, Hillsdale (1996)

    Google Scholar 

  27. Samurcay, R.: The concept of variable in programming: Its meaning and use in problem solving by novice programmers. In: Soloway, E., Spohrer, J.C. (eds.) Studying the Novice Programmer, pp. 161–178. Lawrence Erlbaum, Hillsdale (1989)

    Google Scholar 

  28. Schiffman, S.S., Reynolds, M.L., Young, F.W.: Introduction to Multidimensional Scaling - Theory, Methods, and Applications. Academic Press, New York (1981)

    MATH  Google Scholar 

  29. Shepard, R.N.: Analysis of proximities: Multidimensional scaling with an unknown distance function I & II. Psychometrika 27, 125–140 & 219–246 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  30. Soloway, E., Bonar, J., Ehrlich, K.: Cognitive strategies and looping constructs. In: Soloway, E., Spohrer, J.C. (eds.) Studying the Novice Programmer, pp. 191–207. Lawrence Erlbaum, Hillsdale (1989)

    Google Scholar 

  31. Stahl, G.: Sustaining group cognition in a math chat environment. Research and Practice in Technology Enhanced Learning (RPTEL) 1(2), 85–113 (2006)

    Article  Google Scholar 

  32. Stahl, G., Koschmann, T., Suthers, D.: Computer-supported collaborative learning: An historical perspective. In: Sawyer, R.K. (ed.) Cambridge Handbook of the Learning Sciences, pp. 409–426. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  33. Steyvers, M.: Multidimensional Scaling. In: Encyclopedia of Cognitive Science. Macmillan, London (2002)

    Google Scholar 

  34. Strijbos, J.W., Martens, R.L., Prins, F.J., Jochems, W.M.G.: Content analysis: What are they talking about? Computers and Education 46(1), 29–48 (2006)

    Article  Google Scholar 

  35. Tindale, R.S., Kameda, T., Hinsz, V.B.: Group decision making. In: Hogg, M.A., Cooper, J. (eds.) Sage Handbook of Social Psychology, pp. 381–403. Sage, London (2003)

    Google Scholar 

  36. Wegner, D.M.: Transactive memory: A contemporary analysis of the group mind. In: Mullen, B., Goethals, G.R. (eds.) Theories of Group Behaviour, pp. 185–208. Springer, New York (1987)

    Chapter  Google Scholar 

  37. Wirtz, M., Caspar, F.: Beurteilerübereinstimmung und Beurteilerreliabilität. Verlag für Psychologie, Göttingen (2002)

    Google Scholar 

  38. XLSTAT, Addinsoft (2009), http://www.xlstat.com

  39. Young, F.W., Hamer, R.M.: Theory and applications of multidimensional scaling. Erlbaum, Hillsdale (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Kahrimanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kahrimanis, G., Chounta, IA., Avouris, N. (2012). Validating Empirically a Rating Approach for Quantifying the Quality of Collaboration. In: Daradoumis, T., Demetriadis, S., Xhafa, F. (eds) Intelligent Adaptation and Personalization Techniques in Computer-Supported Collaborative Learning. Studies in Computational Intelligence, vol 408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28586-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28586-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28585-1

  • Online ISBN: 978-3-642-28586-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics