Abstract
Sentiment analysis requires human efforts to construct clue lexicons and/or annotations for machine learning, which are considered domain-dependent. This paper presents a sentiment analysis method where clues are learned automatically with a minimum training data at a sentence level. The main strategy is to learn and weight sentiment-revealing clues by first generating a maximal set of candidates from the annotated sentences for maximum recall and learning a classifier using linguistically-motivated composite features at a later stage for higher precision. The proposed method is geared toward detecting negative sentiment sentences as they are not appropriate for suggesting contextual ads. We show how clue-based sentiment analysis can be done without having to assume availability of a separately constructed clue lexicon. Our experimental work with both Korean and English news corpora shows that the proposed method outperforms word-feature based SVM classifiers. The result is especially encouraging because this relatively simple method can be used for documents in new domains and time periods for which sentiment clues may vary.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choi, Y., Cardie, C.: Learning withCompositional Semantics as Structural Inference forSubsentential Sentiment Analysis. In: Proc. of EMNLP 2008 (2008)
Choi, Y., Kim, Y., Myaeng, S.-H.: Domain-specific Sentiment Analysis using Contextual Feature Generation. In: Proc. of CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion Measurement, TSA (2009)
Choi, Y., Jung, Y., Myaeng, S.-H.: Identifying Controversial Issues and their Sub-topics in News Articles. In: Chen, H., Chau, M., Li, S.-H., Urs, S., Srinivasa, S., Wang, G.A. (eds.) PAISI 2010. LNCS, vol. 6122, pp. 140–153. Springer, Heidelberg (2010)
Durant, K.T., Smith, M.D.: Predicting the Political Sentiment of Web Log Posts using Supervised Machine Learning Techniques Coupled with Feature Selection. In: Nasraoui, O., Spiliopoulou, M., Srivastava, J., Mobasher, B., Masand, B. (eds.) WebKDD 2006. LNCS (LNAI), vol. 4811, pp. 187–206. Springer, Heidelberg (2007)
Esuli, A., Sebastian, F.: SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining. In: Proc. of the LREC 2006 (2006)
Fan, T.-K., Chang, C.-H.: Sentiment-oriented Contextual Advertising. Knowledge Information System 23 (2010)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
Jia, L., Yu, C., Meng, W.: The Effect of Negation on Sentiment Analysis and Retrieval Effectiveness. In: Proc. of CIKM 2009 (2009)
Kim, S.-M., Hovy, E.: Determining the Sentiment of Opinions. In: Proc. of COLING 2004 (2004)
Kim, Y., Choi, Y., Myaeng, S.-H.: Generating Domain-specific Clues using News Corpus for Sentiment Classification. In: Proc. of Weblogs and Social Media 2010 (2010)
Melville, P., Gryc, W., Lawrence, R.: Sentiment Analysis of Blogs by Combining Lexical Knowledge with Text Classification. In: Proc. of SIGKDD 2009 (2009)
Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. In: Proc. of HLT/EMNLP 2005 (2005)
Tan, S., Cheng, X., Wang, Y., Xu, H.: Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 337–349. Springer, Heidelberg (2009)
Pan, S., Ni, X., Sun, J.-T., Yang, Q., Chen, Z.: Cross-Domain Sentiment Classification via Spectral Feature Alignment. In: Proc. of WWW 2010 (2010)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification usingMachine Learning Techniques. In: Proc. of EMNLP 2002 (2002)
Stone, P., Bales, R., Namenwirth, J., Ogilvie, D.: The General Inquirer: A Computer System for Content Analysis and Retrieval Based on the Sentence as a Unit of Information. The MIT Press (1966)
Esuli, A., Sebastian, F.: SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining. In: Proc. of LREC 2006 (2006)
Seki, Y., Ku, L.-W., Sun, L., Chen, H.-H., Kando, N.: Overview of Multilingual Opinion Analysis at NTCIR-8. In: Proc. of NTCIR-8 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Choi, Y., Oh, HJ., Myaeng, SH. (2012). A Generate-and-Test Method of Detecting Negative-Sentiment Sentences. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2012. Lecture Notes in Computer Science, vol 7181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28604-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-28604-9_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28603-2
Online ISBN: 978-3-642-28604-9
eBook Packages: Computer ScienceComputer Science (R0)