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Foreword

It started with image processing in the sixties. Back then, it took ages to
digitize a Landsat image and then process it with a mainframe computer. Pro-
cessing was inspired on the achievements of signal processing and was still
very much oriented towards programming.

In the seventies, image analysis spun off combining image measurement
with statistical pattern recognition. Slowly, computational methods detached
themselves from the sensor and the goal to become more generally applicable.

In the eighties, model-driven computer vision originated when artificial in-
telligence and geometric modelling came together with image analysis compo-
nents. The emphasis was on precise analysis with little or no interaction, still
very much an art evaluated by visual appeal. The main bottleneck was in the
amount of data using an average of 5 to 50 pictures to illustrate the point.

At the beginning of the nineties, vision became available to many with the
advent of sufficiently fast PCs. The Internet revealed the interest of the gen-
eral public im images, eventually introducing content-based image retrieval.
Combining independent (informal) archives, as the web is, urges for interac-
tive evaluation of approximate results and hence weak algorithms and their
combination in weak classifiers.

In the new century, the last analog bastion was taken. In a few years, sen-
sors have become all digital. Archives will soon follow. As a consequence
of this change in the basic conditions datasets will overflow. Computer vision
will spin off a new branch to be called something like archive-based or se-
mantic vision including a role for formal knowledge description in an ontology
equipped with detectors. An alternative view is experience-based or cognitive
vision. This is mostly a data-driven view on vision and includes the elementary
laws of image formation.

This book comes right on time. The general trend is easy to see. The meth-
ods of computation went from dedicated to one specific task to more generally
applicable building blocks, from detailed attention to one aspect like filtering
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to a broad variety of topics, from a detailed model design evaluated against a
few data to abstract rules tuned to a robust application.

From the source to consumption, images are now all digital. Very soon,
archives will be overflowing. This is slightly worrying as it will raise the level
of expectations about the accessibility of the pictorial content to a level com-
patible with what humans can achieve.

There is only one realistic chance to respond. From the trend displayed
above, it is best to identify basic laws and then to learn the specifics of the
model from a larger dataset. Rather than excluding interaction in the evaluation
of the result, it is better to perceive interaction as a valuable source of instant
learning for the algorithm.

This book builds on that insight: that the key element in the current rev-
olution is the use of machine learning to capture the variations in visual ap-
pearance, rather than having the designer of the model accomplish this. As
a bonus, models learned from large datasets are likely to be more robust and
more realistic than the brittle all-design models.

This book recognizes that machine learning for computer vision is distinc-
tively different from plain machine learning. Loads of data, spatial coherence,
and the large variety of appearances, make computer vision a special challenge
for the machine learning algorithms. Hence, the book does not waste itself on
the complete spectrum of machine learning algorithms. Rather, this book is
focussed on machine learning for pictures.

It is amazing so early in a new field that a book appears which connects
theory to algorithms and through them to convincing applications.

The authors met one another at Urbana-Champaign and then dispersed over
the world, apart from Thomas Huang who has been there forever. This book
will surely be with us for quite some time to come.

Arnold Smeulders
University of Amsterdam
The Netherlands
October, 2004



Preface

The goal of computer vision research is to provide computers with human-
like perception capabilities so that they can sense the environment, understand
the sensed data, take appropriate actions, and learn from this experience in
order to enhance future performance. The field has evolved from the applica-
tion of classical pattern recognition and image processing methods to advanced
techniques in image understanding like model-based and knowledge-based vi-
sion.

In recent years, there has been an increased demand for computer vision sys-
tems to address “real-world” problems. However, much of our current models
and methodologies do not seem to scale out of limited “toy” domains. There-
fore, the current state-of-the-art in computer vision needs significant advance-
ments to deal with real-world applications, such as navigation, target recogni-
tion, manufacturing, photo interpretation, remote sensing, etc. It is widely un-
derstood that many of these applications require vision algorithms and systems
to work under partial occlusion, possibly under high clutter, low contrast, and
changing environmental conditions. This requires that the vision techniques
should be robust and flexible to optimize performance in a given scenario.

The field of machine learning is driven by the idea that computer algorithms
and systems can improve their own performance with time. Machine learning
has evolved from the relatively “knowledge-free” general purpose learning sys-
tem, the “perceptron” [Rosenblatt, 1958], and decision-theoretic approaches
for learning [Blockeel and De Raedt, 1998], to symbolic learning of high-level
knowledge [Michalski et al., 1986], artificial neural networks [Rowley et al.,
1998a], and genetic algorithms [DeJong, 1988]. With the recent advances in
hardware and software, a variety of practical applications of the machine learn-
ing research is emerging [Segre, 1992].

Vision provides interesting and challenging problems and a rich environ-
ment to advance the state-of-the art in machine learning. Machine learning
technology has a strong potential to contribute to the development of flexible
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and robust vision algorithms, thus improving the performance of practical vi-
sion systems. Learning-based vision systems are expected to provide a higher
level of competence and greater generality. Learning may allow us to use the
experience gained in creating a vision system for one application domain to
a vision system for another domain by developing systems that acquire and
maintain knowledge. We claim that learning represents the next challenging
frontier for computer vision research.

More specifically, machine learning offers effective methods for computer
vision for automating the model/concept acquisition and updating processes,
adapting task parameters and representations, and using experience for gener-
ating, verifying, and modifying hypotheses. Expanding this list of computer
vision problems, we find that some of the applications of machine learning
in computer vision are: segmentation and feature extraction; learning rules,
relations, features, discriminant functions, and evaluation strategies; learning
and refining visual models; indexing and recognition strategies; integration of
vision modules and task-level learning; learning shape representation and sur-
face reconstruction strategies; self-organizing algorithms for pattern learning;
biologically motivated modeling of vision systems that learn; and parameter
adaptation, and self-calibration of vision systems. As an eventual goal, ma-
chine learning may provide the necessary tools for synthesizing vision algo-
rithms starting from adaptation of control parameters of vision algorithms and
systems.

The goal of this book is to address the use of several important machine
learning techniques into computer vision applications. An innovative combi-
nation of computer vision and machine learning techniques has the promise
of advancing the field of computer vision, which will contribute to better un-
derstanding of complex real-world applications. There is another benefit of
incorporating a learning paradigm in the computational vision framework. To
mature the laboratory-grown vision systems into real-world working systems,
it is necessary to evaluate the performance characteristics of these systems us-
ing a variety of real, calibrated data. Learning offers this evaluation tool, since
no learning can take place without appropriate evaluation of the results.

Generally, learning requires large amounts of data and fast computational
resources for its practical use. However, all learning does not have to be on-
line. Some of the learning can be done off-line, e.g., optimizing parameters,
features, and sensors during training to improve performance. Depending upon
the domain of application, the large number of training samples needed for
inductive learning techniques may not be available. Thus, learning techniques
should be able to work with varying amounts of a priori knowledge and data.

The effective usage of machine learning technology in real-world computer
vision problems requires understanding the domain of application, abstraction
of a learning problem from a given computer vision task, and the selection
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of appropriate representations for the learnable (input) and learned (internal)
entities of the system. To succeed in selecting the most appropriate machine
learning technique(s) for the given computer vision task, an adequate under-
standing of the different machine learning paradigms is necessary.

A learning system has to clearly demonstrate and answer the questions like
what is being learned, how it is learned, what data is used to learn, how to rep-
resent what has been learned, how well and how efficient is the learning taking
place and what are the evaluation criteria for the task at hand. Experimen-
tal details are essential for demonstrating the learning behavior of algorithms
and systems. These experiments need to include scientific experimental design
methodology for training/testing, parametric studies, and measures of perfor-
mance improvement with experience. Experiments that exihibit scalability of
learning-based vision systems are also very important.

In this book, we address all these important aspects. In each of the chapters,
we show how the literature has introduced the techniques into the particular
topic area, we present the background theory, discuss comparative experiments
made by us, and conclude with comments and recommendations.
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