Abstract
Visual recognition problems often involve classification of myriads of pixels, across scales, to locate objects of interest in an image or to segment images according to object classes. The requirement for high speed and accuracy makes the problems very challenging and has motivated studies on efficient classification algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the multimodal problems by simultaneously clustering samples and boosting classifiers in Section 2. The method is extended into an online version for object tracking in Section 3. Section 4 presents a tree-structured classifier, called Super tree, to further speed up the classification time of a standard boosting classifier. The proposed methods are demonstrated for object detection, tracking and segmentation tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proc. ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pp. 89–98 (2003)
Jordan, M.I., Jacobs, R.A.: Hierarchical mixture of experts and the EM algorithm. Neural Computation 6(2), 181–214 (1994)
Viola, P., Jones, M.: Robust real-time object detection. Int’l J. Computer Vision 57(2), 137–154 (2002)
Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. on PAMI 29(5), 854–869 (2007)
Viola, P., Platt, J.C., Zhang, C.: Multiple Instance Boosting for Object Detection. In: Proc. Advances in Neural Information Processing Systems, pp. 1417–1426 (2006)
Li, S.Z., Zhang, Z.: Floatboost learning and statistical face detection. IEEE Trans. on PAMI 26(9), 1112–1123 (2004)
Sochman, J., Matas, J.: Waldboost - learning for time constrained sequential detection. Proc. CVPR 2, 150–157 (June 2005)
Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)
Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In: Proc. Advances in Neural Information Processing Systems, pp. 512–518 (2000)
Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression Database. IEEE Trans. on PAMI 25(12), 1615–1618 (2003)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: Proc. CVPR, pp. 886–893 (2005)
Rowley, H.A., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Trans. on PAMI 20(1), 23–38 (1998)
Schneiderman, H., Kanade, T.: A Statistical Model for 3D Object Detection Applied to Faces and Cars. In: Proc. CVPR (June 2000)
Wu, B., Nevatia, R.: Cluster Boosted Tree Classifier for Multi-View, Multi-Pose Object Detection. In: Proc. ICCV (2007)
Huang, C., Ai, H., Li, Y., Lao, S.: Vector Boosting for Rotation Invariant Multi-View Face Detection. In: Proc. ICCV (2005)
Tu, Z.: Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering. In: Proc. ICCV (2005)
Grossmann, E.: AdaTree: boosting a weak classifier into a decision tree. In: IEEE Workshop on Learning in Computer Vision and Pattern Recognition, p. 105 (2004)
Babenko, B., Dollár, P., Tu, Z., Belongie, S.: Simultaneous learning and alignment: Multi-instance and multi-pose learning. In: ECCV Workshop on Faces in Real-Life Images (2008)
Wojek, C., Walk, S., Schiele, B.: Multi-Cue Onboard Pedestrian Detection. In: Proc. CVPR (2009)
Pham, M.T., Cham, T.J.: Fast training and selection of Haar features using statistics in boosting-based face detection. In: Proc. ICCV (2007)
Avidan, S.: Ensemble tracking. IEEE Trans. PAMI 29(2), 261–271 (2007)
Babenko, B., Yang, M.-H., Belongie, S.: Visual tracking with online multiple instance learning. In: Proc. CVPR, Miami, FL (June 2009)
Black, M.J., Jepson, A.: Eigentracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 329–342. Springer, Heidelberg (1996)
Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. on PAMI 27(10), 1631–1643 (2005)
Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an application to boosting. J. of Computer and System Sciences 55(1), 119–139 (1997)
Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-Supervised On-line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
Hall, P., Marshall, D., Martin, R.: Merging and splitting eigenspace models. IEEE Trans. on PAMI 22(9), 1042–1049 (2000)
Jebara, T., Pentland, A.: Parameterized structure from motion for 3d adaptive feedback tracking of faces. In: Proc. CVPR, pp. 144–150 (June 1997)
Jones, M., Viola, P.: Fast multi-view face detection. Technical Report 96, MERL (2003)
Kim, T.-K., Cipolla, R.: MCBoost: Multiple classifier boosting for perceptual co-clustering of images and visual features. In: Proc. Advances in Neural Information Processing Systems, Vancouver, Canada (December 2008)
Lee, K.-C., Ho, J., Yang, M.-H., Kriegman, D.: Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding 99(3), 303–331 (2005)
Avidan, S.: SpatialBoost: Adding Spatial Reasoning to AdaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 386–396. Springer, Heidelberg (2006)
Kim, T.-K., Woodley, T., Stenger, B., Cipolla, R.: Online Multiple Classifier Boosting for Object Tracking. In: Proc. of IEEE CVPR Workshop on Online Learning for Computer Vision, San Francisco, USA (June 2010)
Zhou, S.: A binary decision tree implementation of a boosted strong classifier. In: IEEE Workshop on Analysis and Modeling of Faces and Gestures, pp. 198–212 (2005)
Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
Quinlan, J.: Bagging, boosting, and c4.5. In: Proc. National. Conf. on Artificial Intelligence, pp. 725–730 (1996)
Schwender, H.: Minimization of Boolean Expressions Using Matrix Algebra, Technical report, Collaborative Research Center SFB 475. University of Dortmund (2007)
Chen, J.: Application of Boolean expression minimization to learning via hierarchical generalization. In: Proc. ACM Symposium on Applied Computing, pp. 303–307 (1994)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill (2001)
Kim, T.-K., Kim, H., Hwang, W., Kittler, J.: Component-based LDA Face Description for Image Retrieval and MPEG-7 Standardisation. Image and Vision Computing 23(7), 631–642 (2005)
Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and Recognition Using Structure from Motion Point Clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008)
Basak, J.: Online adaptive decision trees. Journal of Neural Computation 16, 1959–1981 (2004)
Yeh, T., Lee, J., Darrell, T.: Adaptive Vocabulary Forests for Dynamic Indexing and Category Learning. In: Proc. ICCV (2007)
Rahimi, A., Recht, B.: Random Kitchen Sinks: Replacing Optimization with Randomization in Learning. In: Proc. Neural Information Processing Systems (2008)
Kim, T.-K., Budvytis, I., Cipolla, R.: Making a Shallow Network Deep: Growing a Tree from Decision Regions of a Boosting Classifier. In: Proc. of British Machine Vision Conference, Aberystwyth, UK (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Kim, TK., Cipolla, R. (2013). Multiple Classifier Boosting and Tree-Structured Classifiers. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-28661-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28660-5
Online ISBN: 978-3-642-28661-2
eBook Packages: EngineeringEngineering (R0)