Abstract
VisLab has been pioneering the world of autonomous driving since its early years; in 1998 VisLab organized one of the most innovative experiments for that period: a passenger car was equipped with sensing and actuation devices and was tested with autonomous steering along a 2000+ km on Italian highways [5].
VisLab then contiuned its efforts within this very promising research domain; it partnered with different companies and implemented the perception system of TerraMax, the largest entry in the DARPA Grand Challenge. In 2005 TerraMax was one of only 5 vehicles to successdully finish the race: about 220 km in autonomous mode along the Mohave desert in Nevada [4].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bertozzi, M., Broggi, A., Fascioli, A.: Stereo Inverse Perspective Mapping: Theory and Applications. Image and Vision Computing Journal 8(16), 585–590 (1998)
Bombini, L., Cattani, S., Cerri, P., Fedriga, R.I., Felisa, M., Porta, P.P.: Test bed for Unified Perception & Decision Architecture. In: Procs. 13th Int. Forum on Advanced Microsystems for Automotive Applications, Berlin, Germany (May 2009)
Braid, D., Broggi, A., Schmiedel, G.: The TerraMax Autonomous Vehicle. Journal of Field Robotics 23(9), 693–708 (2006)
Braid, D., Broggi, A., Schmiedel, G.: The TerraMax Autonomous Vehicle concludes the 2005 DARPA Grand Challenge. In: Procs. IEEE Intelligent Vehicles Symposium 2006, Tokyo, Japan, pp. 534–539 (June 2006)
Broggi, A., Bertozzi, M., Fascioli, A., Conte, G.: Automatic Vehicle Guidance: the Experience of the ARGO Vehicle. World Scientific, Singapore (1999) ISBN 9810237200
Broggi, A., Cappalunga, A., Caraffi, C., Cattani, S., Ghidoni, S., Grisleri, P., Porta, P.P., Posterli, M., Zani, P.: TerraMax Vision at the Urban Challenge 2007. IEEE Trans. on Intelligent Transportation Systems 11(1), 194–205 (2010)
Broggi, A., Cerri, P., Ghidoni, S., Grisleri, P., Jung, H.G.: A New Approach to Urban Pedestrian Detection for Automatic Braking. IEEE Trans. on Intelligent Transportation Systems 10(4), 594–605 (2009) ISSN: 1524-9050
Chen, Y.-L., Sundareswaran, V., Anderson, C., Broggi, A., Grisleri, P., Porta, P.P., Zani, P., Beck, J.: TerraMax: Team Oshkosh Urban Robot. Journal of Field Robotics 25(10), 841–860 (2008)
Chen, Y.-L., Sundareswaran, V., Anderson, C., Broggi, A., Grisleri, P., Porta, P.P., Zani, P., Beck, J.: TerraMax: Team Oshkosh Urban Robot. In: Buehler, M., Iagnemma, K., Singh, S. (eds.) The DARPA Urban Challenge, Autonomous Vehicles in City Traffic. Springer Tracts in Advanced Robotics, pp. 595–622. Springer, Heidelberg (2009) ISBN: 978-3-642-03990-4
Felisa, M., Zani, P.: Incremental Disparity Space Image computation for automotive applications. In: Procs. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, St.Louis, Missouri, USA (October 2009)
Frchet, M.M.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884-1940) 22(1), 132–136 (1906)
Gehrig, S., Rabe, C.: Real-time semi-global matching on the cpu. In: ECVW 2010, pp. 85–92 (2010)
Hakimi, S.L., Schmeichel, E.F.: Fitting polygonal functions to a set of points in the plane. CVGIP: Graph. Models Image Process. 53(2), 132–136 (1991)
Hangouet, J.F.: Computation of the Hausdorff distance between plane vector polylines. In: Procs. Twelfth International Symposium on Computer-Assisted Cartography, Charlotte, Noth Carolina, USA, vol. 4, pp. 1–10 (1995)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004) ISBN: 0521540518
Hirschmüller, H.: Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information. In: Intl. Conf. on Computer Vision and Pattern Recognition, San Diego, CA, USA, vol, June 2005, vol. 2, pp. 807–814. IEEE Computer Society Press, San Diego (2005)
Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. PAMI 31(9), 1582–1599 (2009)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981)
Mallot, H.A., Bülthoff, H.H., Little, J.J., Bohrer, S.: Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biological Cybernetics 64, 177–185 (1991)
Manduchi, R., Castano, A., Talukder, A., Matthies, L.: Obstacle detection and terrain classification for autonomous off-road navigation. Auton. Robots 18(1), 81–102 (2005)
McMaster, R.B.: A statistical analysis of mathematical measures for linear simplification. Cartography and Geographic Information Science 13(2), 103–116 (1986)
Nedevschi, S., Danescu, R., Schmidt, R., Graf, T.: High accuracy stereovision system for far distance obstacle detection. In: Procs. IEEE Intelligent Vehicles Symposium 2004, Parma, Italy (June 2004)
Nedevschi, S., Oniga, F., Danescu, R., Graf, T., Schmidt, R.: Increased Accuracy Stereo Approach for 3D Lane Detection. In: IEEE Intelligent Vehicles Symposium, Tokyo, Japan, pp. 42–49 (June 2006)
Peuquet, D.J.: An algorithm for calculating minimum euclidean distance between two geographic features. Computers & Geosciences 18(8), 989–1001 (1992)
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (January 1994)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38 (December 2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Berlin Heidelberg
About this chapter
Cite this chapter
Broggi, A., Cattani, S., Medici, P., Zani, P. (2013). Applications of Computer Vision to Vehicles: An Extreme Test. In: Cipolla, R., Battiato, S., Farinella, G. (eds) Machine Learning for Computer Vision. Studies in Computational Intelligence, vol 411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28661-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-28661-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28660-5
Online ISBN: 978-3-642-28661-2
eBook Packages: EngineeringEngineering (R0)