Skip to main content

A Novel Fuzzy Decision Tree Based Method for Detecting Protein Active Sites

  • Conference paper
ICT Innovations 2011 (ICT Innovations 2011)

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 150))

Included in the following conference series:

Abstract

The knowledge of the functions of protein structures is essential for development of new drugs, better crops and synthetic biochemical. There are numerous experimental methods for determining the protein functions, but because of their complexity the number of protein molecules with undetermined functions is rapidly growing. Thus, there is an evident need for development of computer methods for determining the functions of the protein structures. In this study, we introduce the fuzzy theory for protein active sites detection. We propose a novel fuzzy decision tree (FDT) based method for predicting protein active sites that later could be used for determining the functions of the protein molecules. First, we extract several characteristics of the amino acids. Then, we induce FDTs that would be used to predict the protein active sites. We provide experimental results of the evaluation of the prediction power of the proposed method. Also, our method is compared with other machine learning techniques that could be used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hegyi, H., Gerstein, M.: The relationship between protein structure and function: A comprehensive survey with application to the yeast genome. J. Mol. Biol. 288(1), 147–164 (1999)

    Article  Google Scholar 

  2. Todd, A.E., Orengo, C.A., Thornton, J.M.: Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 307(4), 1113–1143 (2001)

    Article  Google Scholar 

  3. Kirac, M., Ozsoyoglul, G., Yang, J.: Annotating proteins by mining protein interaction networks. Bioinformatics 22(14), e260–e270 (2006)

    Article  Google Scholar 

  4. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol. Sys. Bio. 3, 88 (2007)

    Google Scholar 

  5. Panchenko, A.R., Kondrashov, F., Bryant, S.: Prediction of functional sites by analysis of sequence and structure conservation. Protein Science 13(4), 884–892 (2004)

    Article  Google Scholar 

  6. Leibowitz, N., Fligelman, Z.Y., Nussinov, R., Wolfson, H.J.: Automated multiple structure alignment and detection of a common substructure motif. Proteins 43(3), 235–245 (2001)

    Article  Google Scholar 

  7. Tuncbag, N., Kar, G., Keskin, O., Gursoy, A., Nussinov, R.: A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Briefings in Bioinformatics 10(3), 217–232 (2009)

    Article  Google Scholar 

  8. Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F., Pawson, T., Hogue, C.W.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 29(1), 242–245 (2001)

    Article  Google Scholar 

  9. Shrake, A., Rupley, J.A.: Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79(2), 351–371 (1973)

    Article  Google Scholar 

  10. Pintar, A., Carugo, O., Pongor, S.: DPX: for the analysis of the protein core. Bioinformatics 19(2), 313–314 (2003)

    Article  Google Scholar 

  11. Pintar, A., Carugo, O., Pongor, S.: CX, an algorithm that identifies protruding atoms in proteins. Bioinformatics 18(7), 980–984 (2002)

    Article  Google Scholar 

  12. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  13. Jones, S., Thornton, J.M.: Analysis of protein-protein interaction sites using surface patches. J. Mol. Biol. 272(1), 121–132 (1997)

    Article  Google Scholar 

  14. Aytuna, A.S., Gursoy, A., Keskin, O.: Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21(12), 2850–2855 (2005)

    Article  Google Scholar 

  15. Lawrence, M.C., Colman, P.M.: Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234(4), 946–950 (1993)

    Article  Google Scholar 

  16. Neuvirth, H., Raz, R., Schreiber, G.: ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338(1), 181–199 (2004)

    Article  Google Scholar 

  17. Bradford, J.R., Westhead, D.R.: Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21(8), 1487–1494 (2005)

    Article  Google Scholar 

  18. Murakami, Y., Jones, S.: SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics 22(14), 1794–1795 (2006)

    Article  Google Scholar 

  19. Ogmen, U., Keskin, O., Aytuna, A.S., Nussinov, R., Gursoy, A.: PRISM: protein interactions by structural matching. Nucleic Acids Res. 33(2), W331–W336 (2005)

    Article  Google Scholar 

  20. Jones, S., Thornton, J.M.: Prediction of protein-protein interaction sites using patch analysis. J. Mol. Biol. 272(1), 133–143 (1997)

    Article  Google Scholar 

  21. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 1–14 (1998)

    Article  Google Scholar 

  22. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  23. Quinlan, R.J.: Decision trees and decision making. IEEE Transactions on Systems, Man, and Cybernetics 20(2), 339–346 (1990)

    Article  Google Scholar 

  24. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138(2), 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  25. Suárez, A., Lutsko, J.F.: Globally optimal fuzzy decision trees for classification and regression. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1297–1311 (1999)

    Article  Google Scholar 

  26. Wang, X., Chen, B., Olan, G., Ye, F.: On the optimization of fuzzy decision trees. Fuzzy Sets and Systems 112(1), 117–125 (2000)

    Article  MathSciNet  Google Scholar 

  27. Chen, Y.-L., Wang, T., Wang, B.-S., Li, Z.-J.: A Survey of Fuzzy Decision Tree Classifier. Fuzzy Information and Engineering 1(2), 149–159 (2009)

    Article  Google Scholar 

  28. Peng, Y., Flach, P.: Soft Discretization to Enhance the Continuous Decision Tree Induction. In: Giraud-Carrier, C., Lavrac, N., Moyle, S. (eds.) Integrating Aspects of Data Mining, Decision Support and Meta-Learning, pp. 109–118 (2005)

    Google Scholar 

  29. Lee, B., Richards, F.M.: The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55(3), 379–400 (1971)

    Article  Google Scholar 

  30. Chothia, C.: The Nature of the Accessible and Buried Surfaces in Proteins. J. Mol. Biol. 105(1), 1–12 (1976)

    Article  Google Scholar 

  31. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications, 1st edn. Prentice-Hall (1995)

    Google Scholar 

  32. Chandonia, J.-M., Hon, G., Walker, N.S., Conte, L.L., Koehl, P., Levitt, M., Brenner, S.E.: The ASTRAL Compendium in 2004. Nucleic Acids Res. 32, D189–D192 (2004)

    Article  Google Scholar 

  33. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  34. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Sixteenth International Conference on Machine Learning, pp. 124–133 (1999)

    Google Scholar 

  35. Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., Hall, M.: Multiclass alternating decision trees. In: 13th European Conference on Machine Learning, pp. 161–172 (2001)

    Google Scholar 

  36. John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  37. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  38. Kohavi, R.: Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid. In: Second International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina Mirceva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Mirceva, G., Naumoski, A., Davcev, D. (2012). A Novel Fuzzy Decision Tree Based Method for Detecting Protein Active Sites. In: Kocarev, L. (eds) ICT Innovations 2011. ICT Innovations 2011. Advances in Intelligent and Soft Computing, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28664-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28664-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28663-6

  • Online ISBN: 978-3-642-28664-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics